ModelBuilder#
- class pymc_marketing.model_builder.ModelBuilder(model_config=None, sampler_config=None)[source]#
Base class for building models with PyMC-Marketing.
It provides an easy-to-use API (similar to scikit-learn) for models and help with deployment.
Methods
ModelBuilder.__init__
([model_config, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
Build model from the InferenceData object.
ModelBuilder.build_model
(X, y, **kwargs)Create an instance of
pm.Model
based on provided data and model_config.Create the fit_data group based on the input data.
Create attributes for the inference data.
ModelBuilder.fit
(X[, y, progressbar, ...])Fit a model using the data passed as a parameter.
ModelBuilder.graphviz
(**kwargs)Get the graphviz representation of the model.
ModelBuilder.load
(fname)Create a ModelBuilder instance from a file.
ModelBuilder.load_from_idata
(idata)Create a ModelBuilder instance from an InferenceData object.
Perform transformation on the model after sampling.
ModelBuilder.predict
([X, extend_idata])Use a model to predict on unseen data and return point prediction of all the samples.
ModelBuilder.predict_posterior
([X, ...])Generate posterior predictive samples on unseen data.
ModelBuilder.predict_proba
([X, ...])Alias for
predict_posterior
, for consistency with scikit-learn probabilistic estimators.Sample from the model's posterior predictive distribution.
ModelBuilder.sample_prior_predictive
([X, y, ...])Sample from the model's prior predictive distribution.
ModelBuilder.save
(fname)Save the model's inference data to a file.
ModelBuilder.set_idata_attrs
([idata])Set attributes on an InferenceData object.
Attributes
X
default_model_config
Return a class default configuration dictionary.
default_sampler_config
Return a class default sampler configuration dictionary.
fit_result
Get the posterior fit_result.
id
Generate a unique hash value for the model.
output_var
Returns the name of the output variable of the model.
posterior
posterior_predictive
predictions
prior
prior_predictive
version
y