NoAdstock#

class pymc_marketing.mmm.components.adstock.NoAdstock(l_max=FieldInfo(annotation=NoneType, required=True, description='Maximum lag for the adstock transformation.', metadata=[Gt(gt=0)]), normalize=FieldInfo(annotation=NoneType, required=False, default=True, description='Whether to normalize the adstock values.'), mode=FieldInfo(annotation=NoneType, required=False, default=<ConvMode.After: 'After'>, description='Convolution mode.'), priors=FieldInfo(annotation=NoneType, required=False, default=None, description='Priors for the parameters.'), prefix=FieldInfo(annotation=NoneType, required=False, default=None, description='Prefix for the parameters.'))[source]#

Wrapper around no adstock transformation.

Methods

NoAdstock.__init__([l_max, normalize, mode, ...])

NoAdstock.apply(x[, dims])

Call within a model context.

NoAdstock.function(x)

No adstock function.

NoAdstock.plot_curve(curve[, n_samples, ...])

Plot curve HDI and samples.

NoAdstock.plot_curve_hdi(curve[, ...])

Plot the HDI of the curve.

NoAdstock.plot_curve_samples(curve[, n, ...])

Plot samples from the curve.

NoAdstock.sample_curve(parameters[, amount])

Sample the adstock transformation given parameters.

NoAdstock.sample_prior([coords])

Sample the priors for the transformation.

NoAdstock.set_dims_for_all_priors(dims)

Set the dims for all priors.

NoAdstock.to_dict()

Convert the adstock transformation to a dictionary.

NoAdstock.update_priors(priors)

Update priors for the no adstock transformation.

Attributes

combined_dims

Get the combined dims for all the parameters.

default_priors

function_priors

Get the priors for the function.

lookup_name

model_config

Mapping from variable name to prior for the model.

prefix

variable_mapping

Mapping from parameter name to variable name in the model.