{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Multinomial Choice Models and the Indepdence of Irrelevant Alternatives" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import arviz as az\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", "from pymc_marketing.customer_choice.mnl_logit import MNLogit\n", "from pymc_marketing.paths import data_dir" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "az.style.use(\"arviz-darkgrid\")\n", "plt.rcParams[\"figure.figsize\"] = [12, 7]\n", "plt.rcParams[\"figure.dpi\"] = 100" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Discrete choice models are a class of statistical models used to analyze and predict choices made by individuals among a finite set of alternatives. The set of alternatives ussually represent a choice between \"products\" broadly construed.\n", "\n", "These models are grounded in utility maximization theory, where each option provides a certain level of utility to the decision-maker, and the option with the highest perceived utility is chosen. \n", "\n", "Discrete choice models are widely applied in fields like transportation, marketing, and health economics to understand behavior and inform policy or design. Common variants include the multinomial logit, nested logit, and mixed logit models, each capturing different aspects of choice behavior, such as similarity among alternatives or individual heterogeneity.\n", "In this notebook we will demonstrate how to specify the multinomial logit model and highlight a property of this model known as the Independence of Irrelevant Alternatives. \n", "\n", "### The Data\n", "\n", "We will examine a case of choices between heating systems. This data is drawn from an example in the R package `mlogit`. \n", "\n", "Note the data has been formatted in a \"wide\" fashion where each row represents a choice scenario characterised by (a) the chosen outcome `depvar`, (b) the product attributes: installation costs (`ic_x`) and operating costs (`oc_x`) and (c) fixed attributs of the agent making the choice e.g. the consumer's income and rooms. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idcasedepvaric_gcic_gric_ecic_eric_hpoc_gcoc_groc_ecoc_eroc_hpincomeagehedroomsregion
01gc866.00962.64859.90995.761135.50199.69151.72553.34505.60237.887256ncostl
12gc727.93758.89796.82894.69968.90168.66168.66520.24486.49199.195605scostl
23gc599.48783.05719.86900.111048.30165.58137.80439.06404.74171.474652ncostl
34er835.17793.06761.25831.041048.70180.88147.14483.00425.22222.952504scostl
45er755.59846.29858.86985.64883.05174.91138.90404.41389.52178.492256valley
...................................................
895896gc766.39877.71751.59869.78942.70142.61136.21474.48420.65203.006204mountn
896897gc1128.501167.801047.601292.601297.10207.40213.77705.36551.61243.767457scostl
897898gc787.101055.20842.791041.301064.80175.05141.63478.86448.61254.515607scostl
898899gc860.561081.30799.761123.201218.20211.04151.31495.20401.56246.485506scostl
899900gc893.941119.90967.881091.701387.50175.80180.11518.68458.53245.132654ncostl
\n", "

900 rows Ă— 16 columns

\n", "
" ], "text/plain": [ " idcase depvar ic_gc ic_gr ic_ec ic_er ic_hp oc_gc \\\n", "0 1 gc 866.00 962.64 859.90 995.76 1135.50 199.69 \n", "1 2 gc 727.93 758.89 796.82 894.69 968.90 168.66 \n", "2 3 gc 599.48 783.05 719.86 900.11 1048.30 165.58 \n", "3 4 er 835.17 793.06 761.25 831.04 1048.70 180.88 \n", "4 5 er 755.59 846.29 858.86 985.64 883.05 174.91 \n", ".. ... ... ... ... ... ... ... ... \n", "895 896 gc 766.39 877.71 751.59 869.78 942.70 142.61 \n", "896 897 gc 1128.50 1167.80 1047.60 1292.60 1297.10 207.40 \n", "897 898 gc 787.10 1055.20 842.79 1041.30 1064.80 175.05 \n", "898 899 gc 860.56 1081.30 799.76 1123.20 1218.20 211.04 \n", "899 900 gc 893.94 1119.90 967.88 1091.70 1387.50 175.80 \n", "\n", " oc_gr oc_ec oc_er oc_hp income agehed rooms region \n", "0 151.72 553.34 505.60 237.88 7 25 6 ncostl \n", "1 168.66 520.24 486.49 199.19 5 60 5 scostl \n", "2 137.80 439.06 404.74 171.47 4 65 2 ncostl \n", "3 147.14 483.00 425.22 222.95 2 50 4 scostl \n", "4 138.90 404.41 389.52 178.49 2 25 6 valley \n", ".. ... ... ... ... ... ... ... ... \n", "895 136.21 474.48 420.65 203.00 6 20 4 mountn \n", "896 213.77 705.36 551.61 243.76 7 45 7 scostl \n", "897 141.63 478.86 448.61 254.51 5 60 7 scostl \n", "898 151.31 495.20 401.56 246.48 5 50 6 scostl \n", "899 180.11 518.68 458.53 245.13 2 65 4 ncostl \n", "\n", "[900 rows x 16 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_path = data_dir / \"choice_wide_heating.csv\"\n", "df = pd.read_csv(data_path)\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Seeing that we have 5 alternatives to choose from:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "depvar\n", "gc 573\n", "gr 129\n", "er 84\n", "ec 64\n", "hp 50\n", "Name: count, dtype: int64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[\"depvar\"].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The idea of discrete choice models is to determine how propensity to choose these products is driven by their observable attributes. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Utility Theory and Maximisation\n", "\n", "The general idea of these models is that an individuals’ choices among observed alternatives reflect the maximization of an underlying utility function. In this framework, each alternative in a choice set is associated with a latent utility composed of observable components (e.g., cost, travel time) and unobservable factors captured as random errors. Daniel McFadden formalized this approach using random utility models, including the multinomial logit model, which assumes that the unobserved components of utility follow an extreme value distribution. His models provided a rigorous econometric foundation for analyzing choice behavior from observed decisions, enabling estimation of how changes in attributes influence choice probabilities. This work earned McFadden the Nobel Prize in Economics in 2000 and has had lasting influence in transportation, marketing, and labor economics.\n", "\n", "To specify our multinomial logit model we therefore specify the form of the utility equations that might drive consumers to purchase particular goods amongst a choice set. Note how we distinguish each of the individual alternatives and the alternative-specific-covariates and the individual-specific-covariates by using the `|` notation. This is a variant of the standard Wilkinson stlye formula notation for specifying regression models. Under the hood we fit N regression models for each of the N goods. These regressions are used to generate a Utility score which is fed through a softmax transform to give us probabilities of each particular choice. The most probable choice should be the one with the greatest predicted utility. \n", "\n", "$$ \\begin{split} \\begin{pmatrix}\n", "u_{gc} \\\\\n", "u_{gr} \\\\\n", "u_{ec} \\\\\n", "u_{er} \\\\\n", "u_{hp} \\\\\n", "\\end{pmatrix} = \\begin{pmatrix}\n", "gc_{ic} & gc_{oc} \\\\\n", "gr_{ic} & gr_{oc} \\\\\n", "ec_{ic} & ec_{oc} \\\\\n", "er_{ic} & er_{oc} \\\\\n", "hp_{ic} & hp_{oc} \\\\\n", "\\end{pmatrix} \\begin{pmatrix}\n", "\\beta_{ic} \\\\\n", "\\beta_{oc} \\\\\n", "\\end{pmatrix} \\end{split}\n", "$$\n", "\n", "$$\\text{softmax}(u)_{j} = \\frac{\\exp(u_{j})}{\\sum_{q=1}^{J}\\exp(u_{q})}$$\n", "\n", "For more details on the background theory and varieties of utility specification see the PyMC example [here](https://www.pymc.io/projects/examples/en/latest/generalized_linear_models/GLM-discrete-choice_models.html)\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "utility_formulas = [\n", " \"gc ~ ic_gc + oc_gc | income + rooms + agehed\",\n", " \"gr ~ ic_gr + oc_gr | income + rooms + agehed\",\n", " \"ec ~ ic_ec + oc_ec | income + rooms + agehed\",\n", " \"er ~ ic_er + oc_er | income + rooms + agehed\",\n", " \"hp ~ ic_hp + oc_hp | income + rooms + agehed\",\n", "]\n", "\n", "mnl = MNLogit(df, utility_formulas, \"depvar\", covariates=[\"ic\", \"oc\"])\n", "mnl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once we have initialised our model class we can estimate the model with the sample command" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Sampling: [alphas_, betas, betas_fixed_, likelihood]\n", "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [alphas_, betas, betas_fixed_]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "849bde98f2af4d0982224f70af465994", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 49 seconds.\n",
      "Sampling: [likelihood]\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "13501e70f11a41cd9076cb344b619543",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       ""
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mnl.sample()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can then access the fitted inference data object to inspect the posterior estimates for the model parameters of interest. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/nathanielforde/mambaforge/envs/pymc-marketing-dev/lib/python3.10/site-packages/arviz/stats/diagnostics.py:596: RuntimeWarning: invalid value encountered in scalar divide\n",
      "  (between_chain_variance / within_chain_variance + num_samples - 1) / (num_samples)\n",
      "/Users/nathanielforde/mambaforge/envs/pymc-marketing-dev/lib/python3.10/site-packages/arviz/stats/diagnostics.py:991: RuntimeWarning: invalid value encountered in scalar divide\n",
      "  varsd = varvar / evar / 4\n",
      "/Users/nathanielforde/mambaforge/envs/pymc-marketing-dev/lib/python3.10/site-packages/arviz/stats/diagnostics.py:596: RuntimeWarning: invalid value encountered in scalar divide\n",
      "  (between_chain_variance / within_chain_variance + num_samples - 1) / (num_samples)\n",
      "/Users/nathanielforde/mambaforge/envs/pymc-marketing-dev/lib/python3.10/site-packages/arviz/stats/diagnostics.py:991: RuntimeWarning: invalid value encountered in scalar divide\n",
      "  varsd = varvar / evar / 4\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
alphas[gc]1.3790.7550.0722.9120.0210.0121309.02162.01.0
alphas[gr]0.3580.837-1.2131.9580.0230.0141347.02084.01.0
alphas[ec]0.8031.016-0.9872.8760.0240.0151733.02379.01.0
alphas[er]2.3490.9170.5754.0680.0230.0141541.02238.01.0
alphas[hp]0.0000.0000.0000.0000.000NaN4000.04000.0NaN
betas[ic]-0.0020.001-0.003-0.0000.0000.0003655.02785.01.0
betas[oc]-0.0070.002-0.010-0.0040.0000.0004317.03095.01.0
betas_fixed[gc, income]-0.0610.086-0.2120.1120.0020.0011823.02203.01.0
betas_fixed[gc, rooms]-0.0040.084-0.1570.1570.0020.0011583.02316.01.0
betas_fixed[gc, agehed]0.0160.011-0.0030.0380.0000.0001505.02259.01.0
betas_fixed[gr, income]-0.1690.097-0.3480.0150.0020.0011992.02640.01.0
betas_fixed[gr, rooms]-0.0180.096-0.1880.1730.0020.0011745.02261.01.0
betas_fixed[gr, agehed]0.0200.012-0.0040.0420.0000.0001615.02343.01.0
betas_fixed[ec, income]-0.0530.112-0.2630.1480.0020.0022205.02851.01.0
betas_fixed[ec, rooms]0.0490.108-0.1480.2560.0030.0011849.02686.01.0
betas_fixed[ec, agehed]0.0210.014-0.0040.0470.0000.0001850.02506.01.0
betas_fixed[er, income]-0.0900.105-0.2930.0980.0020.0022067.02501.01.0
betas_fixed[er, rooms]0.0240.102-0.1700.2080.0020.0021721.02422.01.0
betas_fixed[er, agehed]-0.0050.013-0.0290.0200.0000.0001723.02339.01.0
betas_fixed[hp, income]0.0000.0000.0000.0000.000NaN4000.04000.0NaN
betas_fixed[hp, rooms]0.0000.0000.0000.0000.000NaN4000.04000.0NaN
betas_fixed[hp, agehed]0.0000.0000.0000.0000.000NaN4000.04000.0NaN
\n", "
" ], "text/plain": [ " mean sd hdi_3% hdi_97% mcse_mean mcse_sd \\\n", "alphas[gc] 1.379 0.755 0.072 2.912 0.021 0.012 \n", "alphas[gr] 0.358 0.837 -1.213 1.958 0.023 0.014 \n", "alphas[ec] 0.803 1.016 -0.987 2.876 0.024 0.015 \n", "alphas[er] 2.349 0.917 0.575 4.068 0.023 0.014 \n", "alphas[hp] 0.000 0.000 0.000 0.000 0.000 NaN \n", "betas[ic] -0.002 0.001 -0.003 -0.000 0.000 0.000 \n", "betas[oc] -0.007 0.002 -0.010 -0.004 0.000 0.000 \n", "betas_fixed[gc, income] -0.061 0.086 -0.212 0.112 0.002 0.001 \n", "betas_fixed[gc, rooms] -0.004 0.084 -0.157 0.157 0.002 0.001 \n", "betas_fixed[gc, agehed] 0.016 0.011 -0.003 0.038 0.000 0.000 \n", "betas_fixed[gr, income] -0.169 0.097 -0.348 0.015 0.002 0.001 \n", "betas_fixed[gr, rooms] -0.018 0.096 -0.188 0.173 0.002 0.001 \n", "betas_fixed[gr, agehed] 0.020 0.012 -0.004 0.042 0.000 0.000 \n", "betas_fixed[ec, income] -0.053 0.112 -0.263 0.148 0.002 0.002 \n", "betas_fixed[ec, rooms] 0.049 0.108 -0.148 0.256 0.003 0.001 \n", "betas_fixed[ec, agehed] 0.021 0.014 -0.004 0.047 0.000 0.000 \n", "betas_fixed[er, income] -0.090 0.105 -0.293 0.098 0.002 0.002 \n", "betas_fixed[er, rooms] 0.024 0.102 -0.170 0.208 0.002 0.002 \n", "betas_fixed[er, agehed] -0.005 0.013 -0.029 0.020 0.000 0.000 \n", "betas_fixed[hp, income] 0.000 0.000 0.000 0.000 0.000 NaN \n", "betas_fixed[hp, rooms] 0.000 0.000 0.000 0.000 0.000 NaN \n", "betas_fixed[hp, agehed] 0.000 0.000 0.000 0.000 0.000 NaN \n", "\n", " ess_bulk ess_tail r_hat \n", "alphas[gc] 1309.0 2162.0 1.0 \n", "alphas[gr] 1347.0 2084.0 1.0 \n", "alphas[ec] 1733.0 2379.0 1.0 \n", "alphas[er] 1541.0 2238.0 1.0 \n", "alphas[hp] 4000.0 4000.0 NaN \n", "betas[ic] 3655.0 2785.0 1.0 \n", "betas[oc] 4317.0 3095.0 1.0 \n", "betas_fixed[gc, income] 1823.0 2203.0 1.0 \n", "betas_fixed[gc, rooms] 1583.0 2316.0 1.0 \n", "betas_fixed[gc, agehed] 1505.0 2259.0 1.0 \n", "betas_fixed[gr, income] 1992.0 2640.0 1.0 \n", "betas_fixed[gr, rooms] 1745.0 2261.0 1.0 \n", "betas_fixed[gr, agehed] 1615.0 2343.0 1.0 \n", "betas_fixed[ec, income] 2205.0 2851.0 1.0 \n", "betas_fixed[ec, rooms] 1849.0 2686.0 1.0 \n", "betas_fixed[ec, agehed] 1850.0 2506.0 1.0 \n", "betas_fixed[er, income] 2067.0 2501.0 1.0 \n", "betas_fixed[er, rooms] 1721.0 2422.0 1.0 \n", "betas_fixed[er, agehed] 1723.0 2339.0 1.0 \n", "betas_fixed[hp, income] 4000.0 4000.0 NaN \n", "betas_fixed[hp, rooms] 4000.0 4000.0 NaN \n", "betas_fixed[hp, agehed] 4000.0 4000.0 NaN " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "az.summary(mnl.idata, var_names=[\"alphas\", \"betas\", \"betas_fixed\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note here how the beta coefficients attaching to the installation and operating costs are negative implying that unit increases in cost drive a **decrease** in latent subjective utility across the consumer base. It's this kind of behaviourial insight about the attributes of each product that these models are intended to uncover. \n", "\n", "However, some care must be taken in the interpretation of the parameters in these models. Fundamentally discrete choice models are species of causal-inference model where we aim to not merely make inferences about relations in data but make claims about the causal effects of changes in product attributes e.g. how does the market respond to price changes? The criteria of adequacy of a discrete choice model is keyed to how plausible they are as guides to future action and action under counterfactual settings. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### New Pricing Intervention\n", "\n", "Consider the following intervention? How might the consumer popoulation respond to a price intervention which targets a particular market segment? We can fit the multinomial logit model as before under a pricing intervention. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Sampling: [likelihood]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0482e0b3d0494a439d34d80ebd5de1c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "new_policy_df = df.copy()\n",
    "new_policy_df[[\"ic_ec\", \"ic_er\"]] = new_policy_df[[\"ic_ec\", \"ic_er\"]] * 1.5\n",
    "\n",
    "idata_new_policy = mnl.apply_intervention(new_choice_df=new_policy_df)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Then we can inspect how the market share allocated to each of the products is updated after this pricing intervention. On the one hand it makes sense to see a drop in demand for the electrical heating systems which just saw a price increase. However, we can also note a curious fact about the share allocation for the three remaining goods. Each of the goods absorbs an equal 0.08 lift in their market share. This is not a fluke. \n",
    "\n",
    "The observation stems from IIA property of the multinomial logit model. Under counterfactual interventions market changes lead to somewhat counter intuitive patterns of market substitution. The remaining goods on the market exhibit proportional substitution, where all remaining choices \"compete\" equally. This is often a quite implausible assumption about market behaviour because it fails to respect properties of market structure or preference. In our case we may wonder if consumers inclined towards electrical heating systems would all equally flock to gas systems of if their is an inherent market bias among that consumer base towards the more eco-friendly heat pump systems?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
policy_sharenew_policy_sharerelative_change
product
gc0.6360650.6895580.084101
gr0.1435670.1556830.084398
ec0.0710260.042900-0.396003
er0.0934050.050972-0.454290
hp0.0559370.0608870.088481
\n", "
" ], "text/plain": [ " policy_share new_policy_share relative_change\n", "product \n", "gc 0.636065 0.689558 0.084101\n", "gr 0.143567 0.155683 0.084398\n", "ec 0.071026 0.042900 -0.396003\n", "er 0.093405 0.050972 -0.454290\n", "hp 0.055937 0.060887 0.088481" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "change_df = mnl.calculate_share_change(mnl.idata, mnl.intervention_idata)\n", "change_df" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAMrCAYAAADpwvJHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3exJREFUeJzs3Xd83VX9P/DXTZMO2lJSW6DMsn4FBAtYyhSooJQ9BEUEZCqjMhRR+IoI4gT98mWpiArI+CpD9pK9KZsKBRkt0JaW0UAHHRn39wc23460GST3puH5fDzySO495/O575OEGs/rnnMKxWKxGAAAAAAAAACgxSrKXQAAAAAAAAAALG2E7QAAAAAAAADQSsJ2AAAAAAAAAGglYTsAAAAAAAAAtJKwHQAAAAAAAABaSdgOAAAAAAAAAK0kbAcAAAAAAACAVhK2AwAAAAAAAEArCdsBAAAAAAAAoJWE7UCH+clPfpJCobDAR2VlZT7zmc9k6623zvnnn5+GhobG/oMHD16k//wfxx9//BLvPf/Hcsstt0g9s2fPzoUXXpgRI0ZkwIABqaqqyoABA7LddtvlggsuyOzZsxe5pqmaevbsmbXXXjtHH310Jk2atED/8ePHL7GuQqGQ66+/vr2+xQAAAAAAjQ477LAF5iJPP/30RfocfPDBS5y/3GijjVrUb/6Pgw8+OEmy3XbbLbHfnnvu2VjHJZdcskh7t27d0r9//4wYMSJXXXVVCb5jAJ+MsB0oqfr6+kydOjUPP/xwvvOd7+SHP/xhSV53woQJGT58eI455pjcd999ef/991NXV5f3338/999/f0aNGpXhw4dn4sSJzd5rzpw5ee211/K73/0uW221VWbOnFmCEQAAAAAALN5HH32Uq6++eoHnLr300hSLxTJV1HoNDQ2pqanJfffdl/333z8XXHBBuUsCWCJhO1AS3/zmN1MsFjNr1qyccsopjc9fcsklTfa/9957UywWF/g455xzlnjv+T8++OCDxvZisZi99947Y8aMSZIMHz48zzzzTObMmZNnnnkmm266aZJkzJgx2XvvvRf7x+e9996burq6PPLII+nbt2+Sj1ey33DDDYsd98J1FYvFBd69CQAAAADQHq699tpMnz49SVIoFJIk48aNywMPPLDYa0477bRF5i+fffbZJB/P3c7//De/+c3FXtfUPO9f/vKXRe69uF0/t9122xSLxdTU1OSQQw5pfP5//ud/WvldACgtYTtQUj179swBBxzQ+Pijjz7q8Ne88cYb88QTTyRJunfvnn/84x/ZaKON0r1792y00Ua57rrrUlVVlSQZPXp0brrppsXeq1u3btliiy2yww47ND73xhtvdOwAAAAAAACaMX/gfeSRRzb5fGe33HLLLXCcqLlXoLMTtgMlNWfOnAXO2tl33307/DVvu+22xq932mmnrLTSSgu0r7LKKhk5cmTj49tvv73Ze86/+n355ZdvhyoBAMrjvPPOy5AhQ3LeeeeVu5Qu44tf/GKGDBmSCRMmlLsUaJbfVwDoGt58883cd999SZKVVlopv/rVr9KrV68kyTXXXLNUHYVp7hVYmgjbgZK49NJLUygU0rNnz/z0pz9NkmyyySY599xzm+w/YsSIFAqFBT7m/bG4uHvP/3HwwQc3tr/55puNX6+55ppN3mOttdZq/HpJ75asr6/PY489lrvuuitJ0rdv3+yxxx6L7b9wXfO2bwIA6ChPPfVUTj311IwcOTKf//zns8EGG+QLX/hCvv3tb+fqq68uyc5CdH7nnXdeyd9gMe+NHQceeGC73tMbRRbvrrvuynnnnZexY8eWuxQAoINdeumlaWhoSPLxAqe+fftm5513TpLMmDEj11xzTZPXnX766YvMX/7kJz9pl5oOOeSQRe7d3Cr7Dz74YIHjRNvzb0eAjiBsB8rm6aefzu677576+voOfZ3FncHe2j4jRoxIZWVltthii8yYMSOf/exnc8cdd2TAgAHtUSYAwCcya9asHH/88dl///3z97//PZMmTcqgQYMyZMiQFIvF3HffffnRj36UL3/5y3n55ZfLXS5ldv755+f8888vdxmfWFcZR0e56667cv755y8xbF911VWzxhprNB6tBQAsnS677LLGr7/2ta8t8Dnp/FvJ33///SkUCqmurs4ll1yS7t2757jjjssZZ5xR7tIAlkjYDpTEN7/5zRSLxdTW1mb06NEZOHBgkuS+++7LzTffvEj/e++9N8VicYGP7bbbbon3nv9j/j8eV1999cavX3/99SbvMf/z8/dfkpkzZ6a2tnaJfRauqyWhPgBAa9XW1ubQQw/NbbfdloEDB+ZXv/pVRo8enZtvvjnXXnttHnroodxyyy352te+lpqamrz11lvlLhnoJC699NLcfvvtWWGFFcpdCgDQRg8++GBeffXVJEl1dXV69uyZZ599NiuvvHIqKyuTfBxmjx8/fpFrTzvttEXmL9trZftf/vKXRe49/46kS9LQ0JBp06aZTwU6PWE7UFKVlZXZdNNNs8022zQ+99JLL3Xoa+60006NX99+++15++23F2ifOHFi7rjjjsbH85/fPr97770306dPz5lnnpkkGT9+fHbfffdMnDixA6oGAGi5888/P08//XQGDBiQ//3f/82ee+6Znj17LtBn7bXXzhlnnJFLL700/fv3L1OlAABAe5t/4VFNTU022WSTbLzxxtlqq61SV1eX5ONFQZdeemmZKmzetttum/r6+owZMyZDhgxJXV1d/vKXv+Tkk08ud2kASyRsB0qqvr4+TzzxRB544IHG5wYNGtShr7nbbrtl2LBhSZI5c+bkK1/5Sp577rnU1tbmueeey1e+8pXMnTs3SbLppptmt912W+y9+vTpk//6r/9qPKf9ww8/zEknndSh9QMALMn06dPz17/+NUlyyimnZJVVVlli/2HDhmWTTTZZ7L1+9rOfZbvttssGG2yQL33pS7ngggsaJ+jmN3v27Nx888054YQTsuOOO2bjjTfOxhtvnD322CMXXnjhYs+G/+IXv5ghQ4ZkwoQJefbZZ3P44Ydn0003zUYbbZT9998/jz766GJrf//99/PjH/84W2+9dTbccMOMHDkyf/jDH1JXV5cDDzwwQ4YMyeOPP97ktQ8++GCOPPLIbLnlltlggw2yzTbb5OSTT86bb765xO/X4kycODEnnnhitthiiwwdOjS77bZbrrjiiiWuvBkyZEiGDBmy2Pb5vzcLKxaLueWWW3LIIYdks802ywYbbJDtt98+Z555Zt59990W1z3v3PSFa5r3sfBrP/300xk1atQC37eTTjopr732WotfszkTJkzIkCFD8sUvfjFJcsMNN2TvvffO0KFDM3z48Bx77LGL7MbQ2nFMnjw5Z555Znbcccd87nOfy7Bhw3LggQfm9ttvb7Km+X+fxo4dm2OPPTZbbrll1l133Vx33XU59thjM2TIkPzpT39a7LjuueeeDBkyJHvttdcibZ+kntdeey3HHntsNttss3zuc5/L3nvvnVtvvbXJ7+k//vGPJMnJJ5+8wPdn/nPul/R7V1tbm7/+9a/ZZ599sskmm2SjjTbK7rvvnt/97neZNWvWIv3b8rMEAD6Zjz76KFdffXWL+l566aWdeqV4RUVFNthgg1x55ZWpqPg4vjrnnHOWeCQOQLkJ24GSuPTSS1MoFFJZWZnhw4c3Tgiuueaa2XvvvRfpP2LEiBQKhQU+FreNfHMqKiryj3/8IxtuuGGS5NFHH81GG22U7t27Z6ONNmqckN1www1z3XXXpVAoNHvPs846q/FMw6uuuiqjR49ust/CYygUCu22DRMAQPLxsTwzZ85M//79s+OOO7b5PtOnT8/Xvva1XHnllVluueWy/PLL580338y5557b5N8v//rXv/K9730vd955Z2bPnp0111wzyy+/fF599dX8z//8Tw444IDMnj17iXUfcMABGTNmTFZdddVUVlbmqaeeyuGHH95kYD558uTss88++dvf/pYPPvgga6+9dorFYn7729/m2GOPXeLYfvazn+Xwww/PvffemyRZZ511MnPmzFx33XXZa6+98vTTT7fqe/Xaa69l7733zk033ZSZM2dmrbXWyowZM3LGGWd0yJmStbW1Of744/Pd7343jzzySLp375611lor77//fv76179mr732yrhx41p0r0GDBi3wZotNNtlkgY8ePXo0tl155ZXZf//9889//jPJx4H2rFmzcsMNN2SvvfbKfffd167jTJLf/OY3Oemkk/LBBx9k8ODBmTVrVu644458/etfz9SpU9s0jtGjR2fXXXfNX//610yePDmrr756+vTpk9GjR+e4447Lr371q8XW88QTT+SrX/1qHnzwway44oqNb2bZddddkyS33HLLYq+d17bLLrss8PwnqeeFF17IPvvsk4ceeigrr7xyevfunRdeeCEnnHBCbrjhhsZ+PXr0yCabbJLPfOYzSZLBgwcv8P1pyRueZ8+encMPPzxnnnlmxowZkxVXXDGrrbZaXnnllZxzzjn5+te/npqamsVe39KfJQDwyVx77bWZPn16kmTjjTdeZNv2urq6rLzyykmScePGLbAIqqMdcsghi8yNDh48uNnrNtlkkxx00EFJPl689f3vf7+DKwVoO2E7UHK9evXKuuuumxNOOCGPPvpo+vTp0+Gvucoqq2T06NE5//zzs+2226Z///6prKxM//79s8022+S8887L6NGjm10JNs8666yTo48+OsnHq4y+973vdWT5AACL9cwzzyT5eEJq3nmMbXHllVemf//+ueeee3L99dfnnnvuye9+97t069YtV1999SIrmQcNGpRzzjkno0ePzv33359rr702d9xxR+67777suOOOeeGFF3LxxRcv9vV++ctf5thjj80jjzyS6667Lo8++mh222231NXV5Te/+c0i/U877bRMmjQpG2ywQe6666784x//yB133JErrrgiTzzxROP3YWH/+7//m8suuyyrrLJKLrvssjzyyCP5xz/+kdGjR+f444/PjBkzcsIJJ2TOnDkt+j4Vi8V8//vfzwcffJCtt946DzzwQK677rrce++9+e1vf5urr746U6ZMadG9Wurcc8/N7bffnvXXXz/XX399Hnzwwdxwww157LHHsv/+++fdd9/NiSee2KJ77bPPPrnqqqsaH1911VULfAwcODBJMnbs2PzsZz9rHO9DDz2Ua6+9Ng8//HD233//zJkzJyeeeGLeeeeddhvnlClTcuWVV+aiiy7KPffckxtuuKFxdfi7776bP//5z60ex5QpU/Kd73wnM2bMyHe/+9088cQTuemmm3LfffflqquuygorrJA///nPjW/EWNiFF16Yvfbaq/H39K677srOO++c7bbbLn379s0LL7zQ5BsdZs2alXvuuSeFQmGBsP2T1vPb3/42e++9dx599NFcd911eeSRR3LEEUckSc4+++zU19cnSQYOHJirrrqq8fiub3/72wt8f/bZZ59mfx7/8z//k8ceeyzLL798rrvuutx666258cYbc/vtt2fNNdfM2LFjc/rppzd5bWt+lgDAJzP/1vCHHnroIu3dunXLN7/5zcbH828535n97Gc/yzLLLJPk4zcx3nXXXWWuCKBpwnagw/zkJz9Z5J2UxWIxH330UcaOHZvf/va3WX755Rv7jx8/vsn+8z7mXzkz/71b+gdiz549c8wxx+S+++7L+++/n9ra2rz//vu5//77M2rUqEXONV24poVX1p9zzjmNbQ8++GCSj1eMLGkMxWLRynYAoF3NC3Zb+qbBxenWrVvOPvvsrLDCCo3PffGLX8z222+fJI1/78yz8sorZ6eddkrv3r0XeH7gwIH59a9/naqqqtx0002Lfb2tt9463/rWt9KtW7ckSVVVVU455ZR07949zz33XD788MPGvq+//nruu+++VFVV5ZxzzsmKK67Y2DZs2LCcfPLJqa2tXeQ15s6dm/PPPz/dunXLeeedl80222yB8R511FHZcccdM3ny5Nx2220t+TblscceywsvvJCePXvmrLPOynLLLdfYtssuu2S//fZrctv9tpo6dWouueSS9OnTJ7/73e+y3nrrNbb17Nkzp556ajbccMP861//ypNPPtlur/unP/0pdXV12X777XP44Yc3buPZvXv3/PjHP84666yT6dOnLxB4f1J1dXUZNWpUtt1228bnBg4cmOOPPz5J2rQK6y9/+Us++OCDfPOb38y3v/3tdO/evbFtk002aQyLF/f/KdZZZ5385Cc/Sa9evRqf69mzZ7p3754vfelLSZpe3X7PPffko48+yuc///kFVpF/0nrWWmut/Nd//Vfjyv1CoZDjjjsuAwcOzDvvvJOXX365Bd+V5s2YMaPxZ3vaaafls5/9bGPb6quv3rj6/vbbb2/yKIaO+FkCAE276667GucdR40a1WSfeW+iLBaL+ctf/pJLLrmkTXOVLbnuvvvuW+Lc6Pjx4xv7HnzwwU3O/SbJSiutlJkzZza277DDDi2uE6CUhO0AAABLsZkzZybJAmFgW3zhC19YIMSeZ95RPE2ds9zQ0JC77rorp59+eg4//PDsv//++frXv964XeT48eObPNc5Sfbdd99Fnuvfv3/jFpfzv94jjzySJBk+fHhWXXXVRa7bZZddmnzj5LPPPpt3330366+/ftZff/0m65h3tvQTTzzRZPvC5r3pYOTIkenfv/8i7fvvv3+L7tNS999/f+bOnZutt966yZ9PRUVF45tCF3e0UVs8/PDDST4+K3xhhUKh8fl5/dpLUyuul/Q72Jw777wzSdO/b8nHv/dVVVV55plnmnyTxO677974RoOF7bbbbkmSm2++eZG2ec/N226+ver5yle+skg9VVVVjefXt9d56E899VRmzZqVlVZaqfENN/P73Oc+17hN7eJ+B9r7ZwkAANAZtX2PQQAAAMpu3sryxYXaLdVUiJ2kMVD+6KOPFnh+2rRp+da3vrXY7dvn79fUGwFWW221Jvt/5jOfybhx4xZ4vXmrX+YFigvr0aNHVl999UVW9f773/9OkkycODFf//rXm7x23vmWLd36fV4ta621VpPtgwcPTmVlZbutbp83hueee26xY3j//feTtHwMzZk2bVrjmdqLG+faa6+dJAusTPqkqqur07dv30Wen3fu+MK/g82ZOXNmJk6cmCQ59dRTl9h3zpw5+eCDDzJgwIAFnl/c+JNk8803z8CBAzNu3Li8+OKLjW/omDZtWh588MFUVlZmxx13bNd6lvTfTdL679HizNsaf80110yhUGiyz9prr51nnnmmyd+B9v5ZAgAAdFbCdgAAgKXYvG3fJ0yY8InuM+88xIXNW0VbLBYXeP4Xv/hFnnnmmayxxhr57ne/m6FDh6a6urpxW+xtttkmU6ZMaXJ792TxK/Gber15byRYeMv6+TXVNi9Inzp1amN4vDgtPbN9XkhYXV3dZHtFRUWqq6vz7rvvtuh+zZk3hrfffjtvv/32Evu2dAzNmT8InReOLmxeCDxvZ4X20NzvYGvNmDGj8eunn3662f6zZ89e5Lkl7RhRUVGRnXbaKZdddlluvvnmxrD9jjvuSG1tbbbddtsFdj/oyHoW999pW837HWhq94Z55v1uNPU70N4/SwAAgM5K2A4AALAU23jjjXPFFVc0bjtdWdnx/zevrq4ut99+e5LkwgsvzJprrrlI+3vvvddurzcvYFxSsLukwG+33XbL2Wef3S61zLtnTU1Nk+0NDQ354IMPlniPYrHY5Grhplb7znu9I488MieccEIrq22b+YPS999/P8svv/wifeb9fJf0Bohym38c//rXv1JVVdXur7Hrrrvmsssuy6233prvf//7KRQKjWe477LLLiWvp73Mq3VJb1KZt6NCZ/4dAAAA6GjeUgwAALAU23bbbbPMMsvk/fffzx133FGS15w6dWo++uijLLfccosE7UnyyiuvpL6+vt1eb4011kjyf1uqL2zu3Ll54403Fnl+3lbnr7zySrvVMnjw4CTJ66+/3mT7G2+8sdjV/EsKMKdPn95kgN8RY2jOsssu27ii+bXXXmuyz6uvvprk/74fnVHfvn0b3ygwr972NnTo0Ky22mp5++2389RTT+Xdd9/N6NGj07Nnz+ywww4lr2dhi9sCvjnz/pt77bXXFrtafmn4HQAAAOhownYAAICl2LLLLpsDDzwwSfLzn/+82e3kn3rqqRZtYb0kPXv2TPLxtthNbXV98cUXf6L7L2zLLbdMkjz++OONZ17P79Zbb22yjmHDhqW6ujovvfRSHn/88XapZeutt06S3H777U2G41deeeVir11llVWSJGPGjFmk7eqrr27ymm233TZVVVV54IEH2vV89Hk/w6a+b8n/jfOvf/3rIm3FYjGXX375Av3KpblxfPnLX06SXHrppR1Ww7wV7DfffHNuvfXW1NfXZ8SIEU2u+C5FPfPr0aNHksV/fxbn85//fHr16pW33347d9999yLtY8aMyTPPPJNCoZCtttqqXWoFAABYGgnbAQAAlnKjRo3KxhtvnPfeey/77bdfrr/++kXO7x43blxOP/30HHTQQc2eX96cZZddNuuss07q6ury85//PHPnzk2S1NfX56KLLsqtt97arltkr7HGGtluu+1SW1ub448/PlOmTGlse+qpp/KLX/yiydfr0aNHjj322CTJcccdl3/+85+LrNL997//nbPOOitPPfVUi2rZYostsv7662fWrFk56aST8uGHHza23XrrrbnqqqsWu5X/NttskyQ555xzFthm/4EHHsgFF1zQ5HUrrLBCvvnNb6a2tjaHHXbYIm8aKBaLef7553PaaaflrbfeatEYkmTVVVdNkowePbrJ9kMPPTSVlZW5++678+c//zkNDQ1JPt5F4Gc/+1n+/e9/p2/fvvn617/e4tfsCM2N44gjjshyyy2Xf/zjH/nFL36RadOmLdD+wQcf5JprrsmFF17Y5hp22223JB+/AePGG29M8vH28uWqZ37zvj9PPvlkq85z79OnT+PP9owzzsiLL77Y2Pbmm2/mhz/8YZJkp512ymqrrdYutQIAACyNnNkOAACwlOvevXv+9Kc/5eSTT84dd9yRH/zgBznttNOy2mqrpUePHnnnnXcaA+oVV1yxXcKx7373uzn66KPzt7/9LXfccUdWWWWVTJw4MTU1NTn66KNzww03NLkKva1OP/30fP3rX8/zzz+f7bffPv/v//2/fPTRRxk3bly++MUvZvr06XniiSfSrVu3Ba7bf//98/bbb+eiiy7KqFGjstxyy2XVVVdNQ0NDJk6c2Hi++mabbdaiOgqFQn7961/ngAMOyAMPPJBtttkma6+9dmpqajJx4sTsv//+uf/++5sc+2GHHZYbbrghY8eOzYgRI7LWWmtl2rRpmThxYr71rW/llltuafK6E044Ie+8805uvPHGHHTQQRk4cGAGDRqUuXPn5q233mo8r/6ggw5q8fdzp512yiuvvJIjjzwyQ4YMSZ8+fZIkv/3tbzNw4MCst956+a//+q+cccYZ+dWvfpU//elPGTRoUN54441MmzYt3bt3z9lnn52BAwe2+DU7QnPjWHHFFXPhhRfmmGOOySWXXJIrrrgia6yxRnr16pWpU6dmwoQJKRaL2Xnnndtcw1prrZX11lsvY8eOTU1NTZZddtnGN1YsrBT1zO9LX/pS/vu//zu33HJLnn322QwaNCgVFRXZa6+9svfeey/x2uOOOy4vvPBCHn/88ey1115Ze+21U1lZ2XhMxLrrrpsf//jH7VInAADA0krYDgAA0AX07t075557bp588sn84x//yJNPPpkJEyaktrY21dXV2W677fKlL30pu+66a+PW25/EF7/4xfzxj3/MBRdckLFjx2bcuHFZZ511csopp2T33XfPDTfc0A6j+j8rrrhirr766px77rm555578sorr2SllVbKsccem29961vZb7/9kqTJrbu/973vZcSIEbniiivy1FNP5aWXXkrv3r2zwgorZPvtt8+OO+6YLbbYosW1rLPOOrnmmmtyzjnn5KGHHsorr7yS1VdfPaeeemq+8Y1vZPvtt2/yuv79++eqq67K2WefnUcffTTjxo3LmmuumVGjRmXvvffOLbfc0uR1lZWVOeuss7Lrrrvm73//e5577rmMHTs2yy67bAYPHpyNN944O+64Y+M52y3xrW99Kw0NDbnlllvy6quvNu5OMP+OCPvvv3+GDBmSP//5z3n66afz0ksvNf4uffvb3248T76cWjKOz3/+87n11ltz6aWX5r777subb76ZhoaGrLDCCvnCF76QESNGNG7v3la77rprxo4dm+TjreK7d+++2L6lqGee1VZbLb///e/zhz/8IS+++GImTZqUYrGY4cOHN3ttz54986c//SlXXXVVbrjhhrz++utpaGjIWmutlZ133jkHH3xwevXq1S51AgAALK0KxdbsIwYAAACdTENDQ4YPH57p06dn9OjR6devX7lLAgAAAD4FnNkOAADAUu3OO+/M9OnTs/baawvaAQAAgJIRtgMAANDpvffee/njH/+YmpqaBZ5/4IEHctpppyVJ41byAAAAAKVgG3kAAAA6vQkTJmT77bdPoVDIiiuumAEDBmTy5Ml59913kyTbbbddLrzwwnTr1q3MlQIAAACfFsJ2AAAAOr1Zs2bl4osvzoMPPpgJEyZk2rRp6dmzZ9ZZZ53sscce2WeffVJZWVnuMgEAAIBPEWE7AAAAAAAAALSSM9sBAAAAAAAAoJWE7QAAAAAAAADQSg60W4KamppylwAAAAAAAABAiVVXVzfbx8p2gA72/vvv57LLLsv7779f7lIAAAAAALosc7FAqQnbATrYhAkTcvzxx2fChAnlLgUAAAAAoMsyFwuUmrAdAAAAAAAAAFpJ2A4AAAAAAAAArSRsBwAAAAAAAIBWErYDdLDevXtnq622Su/evctdCgAAAABAl2UuFii1QrFYLJa7iM6qpqam3CUAAAAAAAAAUGLV1dXN9rGyHaCDNTQ0ZM6cOWloaCh3KQAAAAAAXZa5WKDUhO0AHWzMmDEZNGhQxowZU+5SAAAAAAC6LHOxQKkJ2wEAAAAAAACglYTtAAAAAAAAANBKwnYAAAAAAAAAaCVhOwAAAAAAAAC0UqFYLBbLXURnVVNTU+4SgC5g7ty5effddzNw4MB079693OUAAAAAAHRJ5mKB9lRdXd1sH2H7EgjbAQAAAAAAAD59WhK2d+pt5J9//vkcccQR2XTTTbPRRhtln332yU033dTi6w888MAMGTJkiR/XX399xw0AIMn48eNz8MEHZ/z48eUuBQAAAACgyzIXC5RaZbkLWJzHH388hx12WKqqqrLLLrukb9++ufPOO3PiiSdm4sSJOfLII5u9x1577ZXhw4cv8nxdXV3+8Ic/pKKiIltssUVHlA/Q6MMPP8yNN96YE044odylAAAAAAB0WeZigVLrlGF7XV1dfvSjH6VQKOSKK67I+uuvnyQ55phjst9+++W8887LyJEjM3jw4CXeZ++9927y+TvuuCPFYjHbbLNNVlhhhfYuHwAAAAAAAIAurlNuI//YY4/lzTffzK677toYtCdJnz59cvTRR6euri7XXXddm+9/9dVXJ0n22WefT1wrAAAAAAAAAJ8+nTJsHz16dJJk6623XqRtq622WqBPa02ePDkPP/xwBg4cmO22267NNQIAAAAAAADw6dUpw/bx48cnSVZfffVF2vr165fq6uq88cYbbbr3tddem4aGhuy1116prOyUu+gDXcyKK66YU089NSuuuGK5SwEAAAAA6LLMxQKl1inT5hkzZiRJ+vbt22R7nz59Mnny5Fbft1gsNm4/35It5Pv165eKik75fgRgKVJdXZ0zzjij3GUAAAAAAHRp5mKBUuuUYXtHeeyxxzJhwoQMHz68yVXzC/vwww9LUBXQ1X344Yd55JFHsuWWW6Zfv37lLgcAAAAAoEsyFwu0p+rq6mb7dMpl23369EmSTJ8+vcn2GTNmLHbV+5JcffXVSVq2qh2gvYwfPz7f+MY3Go/IAAAAAACg/ZmLBUqtU4btgwcPTpImz2X/8MMPU1NT06KV6Qtf989//jPLLrtsdtxxx/YoEwAAAAAAANrNu+++m3322SfDhg3Llltumccee2yxfSdMmJCvf/3rGT58eDbbbLNcdNFFjW1/+9vf8oUvfCFbbrll9txzz0yYMKEU5cOnTqcM2zfddNMkyUMPPbRI28MPP5wkGT58eKvueeONN2bu3LnZbbfd0rNnz09eJAAAAAAAALSj008/PcOGDcuTTz6Z888/P9/61rdSV1e3SL9isZgDDzwwX/va1zJ69Og89thj2WOPPZIk//73v3P66afn2muvzSOPPJKvfe1r+d73vlfqocCnQqcM27fYYousuuqqufnmmzN27NjG52fMmJELL7wwlZWV2WuvvRqfnzp1al577bVMnTp1sfe85pprkthCHgAAAAAAgPZx4403ZrPNNsu2226bs88+O/3798+MGTOSJKNHj87OO++cL3zhC9l6661z6623Nnu/G264IYcffniSZJNNNsnyyy/f5Or2+++/Pz179syee+6ZJCkUCllhhRWSJGPHjs0GG2yQ5ZdfPkmy44475q677lpijga0TacM2ysrK3PmmWemWCxm//33z6mnnppf/epX2WOPPfLKK69k1KhRWWONNRr7X3HFFdl5551zxRVXNHm/f/3rX3nppZfy2c9+Nuuvv36phgGQJOnRo0eGDBmSHj16lLsUAAAAAIAuqb6hPi/MfCGDvjwoL8x8IfUN9R3+mu+++25OOOGEXHnllbn//vvTu3fvxraampocdNBBOe200/Lggw/mgQceyBZbbLHE+02dOjUNDQ0ZMGBA43Orrrpqk1vAv/zyyxkwYEAOO+ywbLvttjnwwAMbz6rfcMMN89xzz+X1119Pkvzv//5visVi3nrrrXYYNTC/Thm2J8nmm2+eK6+8Mp///Odz22235corr8xyyy2Xs846K0cddVSr7mVVO1BO6667bh599NGsu+665S4FAAAAAKDLuenVmzL0kqEZ9eSovL3l2xn15KgMvWRobnr1pg593SeffDKf+9znstZaayVJvvGNbzS2PfHEExkyZEg222yzJElFRUWqq6ubvWehUFjgcbFYbLJfbW1t7r///px44om5//77s/322zeuiF9zzTVz9tln58gjj8wOO+yQGTNmZNlll01VVVWbxgksXqG4uP9KSU1NTblLAAAAAAAAYDFuevWmHHzrwSlmwbirkI9D60t2viS7rb1bh7z2rbfemosvvjjXXXddkmTatGkZPHhw3nzzzTzyyCO54IILcsMNN7TqnqusskqeffbZxtXtO+ywQ37yk59k6623XqDfDTfckIsuuii33HJLkuSjjz7KaqutlilTpqRbt24L9J0yZUo22mijvPbaa1lmmWXaOlz41GnJG2Q67cp2gK5izJgxWW211TJmzJhylwIAAAAA0GXUN9Tn5AdOXiRoT9L43CkPnNJhW8oPGzZsge3ar7rqqsa24cOH59///ncef/zxJElDQ0PjIs8zzjgjf/zjH5u85x577JGLL744SfL0009nypQp2XzzzRfpt8MOO+Ttt9/OpEmTkiR333131ltvvcagffLkyUmS+vr6nH766TnssMME7dABKstdAEBX19DQkBkzZqShoaHcpQAAAAAAlE19Q31m1c3KR3UfZVbtx58/qv0os+pmffx87UcLtM17bnFt78x8J5NmTFrs6xVTzMQZE/PopEez9SpbL7ZfWy2//PL5zW9+k/322y/V1dUZOXJkqqqqsswyy6SioiKXXXZZTj311MyYMSOFQiGnnHJKdtppp7zwwgsZOnRok/c87bTTcuSRR2bYsGGpqqrK73//+1RWfhzn/fznP8+gQYNyyCGHpHfv3jnrrLOy3377pVgspl+/frnooosa7zNq1KhMmDAhtbW1+dKXvpRTTz213ccP2EZ+iWwjD7SH5557LiNGjMi999672D+gAAAAAADKqaHYsMTguy2h+LxgfV7bnPo5ZRnbH3f8Y74y5Csdcu/p06enb9++SZIrrrgil19+eW677bbF9m9oaMiXv/zl3HnnnamosAE1dGYt2UbeynYAAAAAAIBOrKHY8HHQ/Z8Ae2btzCaD70Xa5g/JmwjNG/vWzsrs+tklHdMylcukV2Wv9KrqlWUql8kyVR8/bvxcucwibfPa57W9/sHr+cnDP2n2tVbovUKHjeOiiy7KDTfckLq6ulRXV+ecc85ZYv+KiorcddddHVYPUFrCdgAAAAAAgDZqKDZkdt3sJgPstgbfC7fNqptV0jHNH2wvLvhuqq3x80Kh+MKBea/KXikUCp+4zvqG+lz03EV5e8bbTZ7bXkghK/VZKVustMUnfq3F+d73vpfvfe97HXZ/oHOzjfwS2EYeaA8fffRRXnnllayzzjpZZpllyl0OAAAAAHxqFIvFzK6f3Wy4PbNuZuPK8OaC7/nb5oXopdSzW8+2B9/z961quq1nZc9UFJae7c1vevWmHHzrwUmyQOBeyMdh/iU7X5Ld1t6tHKUBS7mWbCMvbF8CYTsAAAAAAHSMYrGYOfVzWhVuNxd8z7+SfN4W602teO4oPbr1WDD4XjjUnn879KbC8vmuXVzb0hSEl8pNr96Ukx84OZNmTGp8buU+K+fn2/xc0A60mbD9ExK2A+1hwoQJ+Z//+Z8cd9xxWWWVVcpdDgAAAAA0q1gsZm793LYF301toT7vXPGFri1lEN69ovuiq7mrPlnwvfD26N0qupVsPCyovqE+Nz53Y/56/V9z4J4HZvehu/t5AJ9IS8J2Z7YDdLD3338/f/rTn3LAAQcI2wEAAAD4xIrFYmobahcIsBu/rm063J5/m/TFBd8LB+MNxYaSjal7RfdFtj1vLhRfZCv1JbT1quyVygqRSFfWraJb1qxYM/edd19O2/s0QTtQEv6XBQAAAAAA2tHc+rmNofXC4XZzofj8wfeS2uqL9SUbT1VFVauD716VvdK7qvf/bZk+37UL9+tV2StV3apKNh4AaC/CdgAAAAAAPjVq62s/DrIXCrU/SfC9cHtdQ13JxtOt0K0xyG4y6K5acvDdXCguCAeAxRO2AwAAAADQKdQ11C0agDcXii+0Wnz+6xa+ZlbdrNQ21JZsPBWFiixTuUybg+9eVb3Su7L3Eq8ThANA+QjbATrYgAEDctRRR2XAgAHlLgUAAACgzeob6hcMvpcQbje2zf+5ieB74UC9HEH4/KvBWxN8N/Ztqu0/962qqEqhUCjZmODTzlwsUGqFYrFYLHcRnVVNTU25SwAAAAAAaFZ9Q/2CAXgT4XZb2+Z9ntswt2TjKaSwxNXgjY+bCr4X2kJ9cW3du3UXhAMAi1VdXd1sHyvbATrYjBkz8uKLL2b99ddPnz59yl0OAAAAUGINxYamz/b+BMH3wturz6mfU7LxFFJoejX4vHB7CavFW7qSvEe3HoJwoNXMxQKlJmwH6GCvvfZaRo4cmXvvvTdDhw4tdzkAAADAfBqKDR+H4LWzmjwffF7wvUjbfF/PC8YXF6jPrp9d0jG1R/C9pLae3XoKwoFOyVwsUGrCdgAAAACgUyoWi43h9ay6WZlZO7PJcLs1wffCbbPqZpV0TPOH1/PO9m5J8N34ublzxSt7CcIBAEpE2A4AAAAAtFqxWMzs+tlNBtiLC8Wba2tqJXkp9ezWs+3B9/wBetWibfOC8YpCRUnHBABAxxG2AwAAAEAXUywWM6d+TrsG341952svpliyMfXo1mPB1eCLCbfntS+pbeFAfd5nQTgAAK0hbAfoYJWVlfnMZz6Tykr/5AIAAPBxED63fu4iAfb8wfdi2/7TvnDw3VRoXsogvHtF9zYH3y0JxXtV9kq3im4lGw8ASydzsUCpFYrFYun+6l7K1NTUlLsEAAAAAEqoWCymtqH2/1Z1zwu362b+39bmS2hr6WrxhmJDycbUvaL7ItueNxd8L7Lye/5rm9hmvbJCqAEAQNdSXV3dbB9/BQMAAACw1Kitr10gwG5NKN7SLdTri/UlG09VRVWrg+9elb3Su6r34s8Tn+8+vSp7papbVcnGAwAAnybCdoAONnbs2BxwwAG5/PLLs95665W7HAAAgA5TW1/7ccj9n3O+lxSKt+ns8LpZqWuoK9l4uhW6NQbZ84fX84fbSwq+m9omfeFQXBAOAO3HXCxQasJ2gA42d+7cjBs3LnPnzi13KQAAwKdYXUPdAsF3i0Lx+R83sVp84fvVNtSWbDwVhYrGILstwXevql7pXdl7iaG4IBwAli7mYoFSE7YDAAAAlFl9Q/0CAXZjCD5/KN7K4HvhQH1uQ+kmnecPwluyGnxJwffi2qoqqlIoFEo2JgAAgIUJ2wEAAACWoL6hfpFV4AuH2ktqa0koXsogvJDCkoPveY+rFnq88NdNXDvv6+7dugvCAQCALk/YDgAAACy1GooN7R58L7ySfE79nJKNZ14Qvkjw/Z9w+5OcHT6vrUe3HoJwAACAdiBsB+hga6yxRq6++uqsscYa5S4FAABKal4Q3rjleVPngjfVNn9YvtB54gtfO7t+dknHtEzlMu0afC/c1rNbT0E4AEAbmYsFSq1QLBaL5S6is6qpqSl3CQAAANAhisViY3g9q25WZtbObAzG2xp8L7xafFbdrJKOaf7V4PMH2M2F4o2PmwnFe1b2TEWhoqRjAgAAoDyqq6ub7WNlO0AHmzx5ci655JIcfPDBWXHFFctdDgAAS4FisZjZ9bObDLcXF4o3FXwvrm1eiF5KPbv1bHvw3cRK8oXbelX2EoQDAHzKmYsFSk3YDtDBpkyZkl//+tfZaaed/IEHANAFFIvFzKmf0+7B98LtxZRuI7oe3Xo0GXQ3+bmJ1eJLapvXLggHAKCjmYsFSk3YDgAAQJdRLBYzt37ugkH4QqH4wm0LBN21C7Y1de1HdR+lodhQsjF1r+jebsF3U229KnulW0W3ko0HAAAAugphOwAAACVRLBZT21D7f6u654XbdTObXuG9UFtLV5KXMgivqqhq9WrwRQLw+a+t6rXIvSor/F93AAAA6Iz8P3YAAACSJLX1tQsE2EsKxZsLvhe3kry+WF+y8VRVVC0++F4o3F5gy/OmzgVvIgTvVdkrVd2qSjYeAAAAoHMRtgN0sOWWWy777rtvlltuuXKXAgAsxWrraxtXfjcXbrc0+F44UK9rqCvZeLoVujUG2Quf7T0v3F5S8N1U28JnjgvCAQDg08VcLFBqhWKxWCx3EZ1VTU1NuUsAAACWAnUNdQusBm9RKD5/0F27aPC98LW1DbUlG09FoaIxyG5L8N2rqld6V/ZeYijevVv3ko0HAAAAoLWqq6ub7WNlO0AHmz17diZNmpSVVlopPXv2LHc5APCpU99Q3xhgLyncbk3wvXCgPrdhbsnGM38Q3pLV4EsKvps6O3yZqmVSVVGVQqFQsjEBAAC0B3OxQKkJ2wE62Msvv5wRI0bk3nvvzdChQ8tdDgB0KvUN9YusAl8gzG7i7PAltTUVipcyCC+ksOTgu7JXelf9X/Dd+Hjhr6sWbZt33+7dugvCAQAAmmAuFig1YTsAANCkhmLDJwu+5z1uajX4fx7PqZ9TsvHMC8LnhdctDbdb09ajWw9BOAAAAMCnhLAdAACWQvOC8MYtz5va4ny+cLupc8QXt5J8Xtvs+tklHdMylcu0a/C9cFvPbj0F4QAAAAC0G2E7AAC0s2Kx2Liye+EAu63B98Jts+pmlXRM868Gb03w3fi4iS3U57+uZ2XPVBQqSjomAAAAAPgkhO0AAHyqFIvFzK6fvUjwvaRQvLnge/62eSF6KfXs1rPVwfcCIXjVYs4Vn2+VuSAcAAAAABZUKBaLxXIX0VnV1NSUuwQAgE+VYrGYOfVz2j34XvjaYkr3J3CPbj2aDbcbP/8nGF84+J4/NG+qTRAOAAAAAO2rurq62T5WtgMA0CLFYjFz6+dmVt2szKyd+X/h9bww+z/hdpNt/zlbfOHgu7HvfMF4Q7GhZGPqXtG9VcF3a0PxXpW90q2iW8nGAwAAAACUjrAdoIO98sorOeaYY3LBBRdknXXWKXc5QBdVLBZT21C7SIA9s25m0yu8mwm+F7eSvJRBeFVFVatXg88fci+8ZfrCbb0qe6Wywp/DAAAA0FWYiwVKzewiQAf76KOP8uSTT+ajj0p7fi/QudTW1y4x3J4/FG8u+F54Nfi8x/XF+pKNp7KicvHB90Lh9gIrv5u6ZuFQ/D99q7pVlWw8AAAAwNLPXCxQasJ2aKF33303Rx11VMaPH5/u3bvnt7/9bTbffPMm+06YMCHf//7389prr6VQKOSwww7Lt771rQX6jBo1KldeeWXefPPN9OnTpxRDAGAx6hrqlng+eFuC7wXODq+blbqGupKNp1uhW5MB9vxbnC8p+G5JKC4IBwAAAAA+7YTt0EKnn356hg0blmuuuSZPP/10Dj744Dz99NOprFzwP6NisZgDDzwwxx13XPbcc88Ui8W88847C/S5/fbbUygUSlk+wFJrXhC+SIC9pOC7qS3U5wu+F762tqG2ZOOpKFQ0BtlLCr4X17bIVupNhOLdu3Uv2XgAAAAAAD6thO10WTfeeGN+9rOfpWfPntltt93y85//vHEV+ejRo/OTn/wk06dPT7FYzCmnnJKdd955ife74YYb8swzzyRJNtlkkyy//PJ57LHHsvXWWy/Q7/7770/Pnj2z5557JkkKhUJWWGGFxvapU6fm17/+da6//vpcccUV7TtogBKrb6hvDLDnD8EXDreX1LZw8N34+T/95zbMLdl4Cimkd1XvFq8GX1Lw3VTbvCDcG64AAAAAAJZ+wna6pHfffTcnnHBC7rzzzqy11lr53e9+19hWU1OTgw46KJdeemk222yzNDQ05MMPP1zi/aZOnZqGhoYMGDCg8blVV101EyZMWKTvyy+/nAEDBuSwww7Lq6++mtVWWy0//elPM3jw4CTJ97///fzgBz/Isssu2z6DpdNbbbXV8vvf/z6rrbZauUvhU6a+ob7J7cwXCbWbCb4X1zarblbm1M8p2XgKKSw5+K7s9XFQ/p+2xsfzzgpf6Nqm2gThAAAAAEsvc7FAqQnb6ZKefPLJfO5zn8taa62VJPnGN76R//qv/0qSPPHEExkyZEg222yzJElFRUWqq6ubvefC4UuxWGyyX21tbe6///7ccccdWW+99XLJJZfk8MMPz1133ZXrr78+3bt3z4477vhJhsdSprq6Ol/96lfLXQadTEOxodnge4mh+LzHTa0G/8/jUgbhSZoOvv+zwrstwffCgXqPbj0E4QAAAAAslrlYoNSE7XRJxWKxXQOZ/v37J0nee++9xtXtEyZMyCqrrLJI31VXXTUbbrhh1ltvvSTJV7/61Zx44ompr6/PQw89lAceeCBDhw5t7L/lllvmf//3f7P++uu3W710Lu+9916uv/767LnnngvsjkDn1VBsyOy62QsE2E0F3wuH2/OfI974eTGh+ez62SUd07wtzFsbfPeq6pXelb2bva5nt56CcAAAAADKylwsUGrCdrqkYcOG5Tvf+U5ef/31rLnmmrnqqqsa24YPH57jjjsujz/++ALbyFdXV+eMM87IoEGDcsQRRyxyzz322CMXX3xxfvjDH+bpp5/OlClTsvnmmy/Sb4cddsjpp5+eSZMmZaWVVsrdd9+d9dZbL926dcvZZ5+ds88+u7Fv//7988gjj6RPnz4d842g7Oob6nPLC7fkpMtOStU6VTngCwekW0W3cpe1VCsWi40ru5sKuRc+73tJwffi2mbVzSrpmBqD7VYG3419m9hCff5V5j0re6aiUFHSMQEAAABAqU2cODEnnXRSNt10U2E7UBLCdrqk5ZdfPr/5zW+y3377pbq6OiNHjkxVVVWWWWaZVFRU5LLLLsupp56aGTNmpFAo5JRTTslOO+2UF154YYFV5/M77bTTcuSRR2bYsGGpqqrK73//+1RWfvyf0M9//vMMGjQohxxySHr37p2zzjor++23X4rFYvr165eLLrqolMOnk7jp1Zty8gMnZ9KMSck+yQnPnZCzXjsrv9jmF9lt7d3KXV6HKBaLmV0/u8mzvZcUbjfXtvBK8lLq2a1ny7Y6byr4/k9A3tz26oJwAAAAAABY+hSKizt4mtTU1JS7BD6B6dOnp2/fvkmSK664Ipdffnluu+22xfZvaGjIl7/85dx5552pqBB88cnc9OpNOfjWg1PMgv/EFvLxNtuX7HxJyQP3YrGYOfVzlrgavDWh+MLbq89rX3jMHalHtx6LBt1NhNvzB+NLaltkJXllLzsRAAAAAMBS4rnnnsuIESNy7733LnZhHUBLVVdXN9vHyna6rIsuuig33HBD6urqUl1dnXPOOWeJ/SsqKnLXXXeVpji6tPqG+pz8wMlNhs7FFFNIIac8cEp2XnPnxiC3WCxmbv3czKqblZm1M/8vvJ4XZjcRbi8QdDcTms/r31BsKNn3oXtF90XC7cbPLQi+mwvFl6lcRhAOAAAAAACUjbCdLut73/tevve975W7DD6FHp306Mdbxy9GMcVMnDExG/x5gxRTbAzFSxmEV1VUtXo1eOPnplaSz/d43j0qK/xPDAAAAABQOn369MmIESPSp0+fcpcCfEpIQgDa2ZSZU1rW76Om+1VWVC5+Nfi8xwsF3/PaF7mmiUC9V2WvVHWras8hAwAAAACU3VprrZVrr7223GUAnyLCdoB2tkLvFVrU79fb/jpbrLzFIqG4IBwAAAAAoPXq6+szc+bM9O7dO926OYIS6HgV5S4AoKvZYqUtslKflVJIocn2QgpZuc/KOWTDQ/LZAZ/NmsutmRV7r5hleywraAcAAAAAaKN//etfGTx4cP71r3+VuxTgU0LYDtDOulV0yy+2+UWSLBK4z3v8821+nm4V3lkJAAAAAACwtBK2A3SA3dbeLZfsfEkG9Rm0wPMr9Vkpl+x8SXZbe7cyVQYAAAAAAEB7ELYDdJDd1t4tzx38XP576H8n1yT/PfS/8+zBzwraAQAAAAAAugBhO0AH6lbRLRstt1Hyr2Sj5TaydTwAAAAAAEAXUSgWi8VyF9FZ1dTUlLsEoAuora3Nhx9+mH79+qWqqqrc5QAAAAAAdEnmYoH2VF1d3WwfYfsSCNsBAAAAAAAAPn1aErbbRh6gg40bNy77779/xo0bV+5SAAAAAAC6LHOxQKkJ2wE62LRp03L77bdn2rRp5S4FAAAAAKDLMhcLlJqwHQAAAAAAAABaSdgOAAAAAAAAAK0kbAcAAAAAAACAVhK2A3SwQYMG5ac//WkGDRpU7lIAAAAAALosc7FAqRWKxWKx3EV0VjU1NeUuAQAAAAAAAIASq66ubraPle0AHeyDDz7I9ddfnw8++KDcpQAAAAAAdFnmYoFSE7YDdLA33ngjhx56aN54441ylwIAAAAA0GWZiwVKTdgOAAAAAAAAAK0kbAcAAAAAAACAVhK2AwAAAAAAAEArCdsBOljPnj3zuc99Lj179ix3KQAAAAAAXZa5WKDUCsVisVjuIjqrmpqacpcAAAAAAAAAQIlVV1c328fKdgAAAAAAAABoJWE7QAd7/vnns+KKK+b5558vdykAAAAAAF2WuVig1ITtAB2sWCxm7ty5cWoHAAAAAEDHMRcLlJqwHQAAAAAAAABaSdgOAAAAAAAAAK0kbAcAAAAAAACAVioUHVyxWDU1NeUuAegCZs2alfHjx2fw4MHp1atXucsBAAAAAOiSzMUC7am6urrZPsL2JRC2AwAAAAAAAHz6tCRst408QAd76623cuyxx+att94qdykAAAAAAF2WuVig1Dp12P7888/niCOOyKabbpqNNtoo++yzT2666aZW32fGjBk599xzs+uuu2bo0KEZNmxY9tprr5x//vkdUDXAgqZOnZrLL788U6dOLXcpAAAAAABdlrlYoNQqy13A4jz++OM57LDDUlVVlV122SV9+/bNnXfemRNPPDETJ07MkUce2aL7TJo0Kd/85jfz1ltvZcstt8y2226buXPn5s0338wdd9yRUaNGdfBIAAAAAAAAAOhqOmXYXldXlx/96EcpFAq54oorsv766ydJjjnmmOy3334577zzMnLkyAwePHiJ96mvr8+xxx6bd955J5dcckk233zzRV4HAAAAAAAAAFqrU24j/9hjj+XNN9/Mrrvu2hi0J0mfPn1y9NFHp66uLtddd12z97njjjsyZsyYHHrooYsE7UlSWdkp32sAAAAAAAAAQCfXKdPm0aNHJ0m23nrrRdq22mqrBfosya233pokGTlyZN5+++3cd999mT59elZdddVss8026d27dztWDdC0gQMH5vjjj8/AgQPLXQoAAAAAQJdlLhYotU4Zto8fPz5Jsvrqqy/S1q9fv1RXV+eNN95o9j7/+te/kiRPPfVUfvGLX2Tu3LmNbf37988555yTzTbbrH2KBliMlVZaKT/+8Y/LXQYAAAAAQJdmLhYotU4Zts+YMSNJ0rdv3ybb+/Tpk8mTJzd7n/fffz9JcuaZZ+bQQw/NAQcckO7du+eWW27Jr371qxxzzDG59dZbs/zyyzd5fb9+/VJR0Sl32geWItOnT89TTz2Vz3/+84v9dw0AAAAAgE/GXCxQap0ybG8vxWIxSbLddtvlxBNPbHz+wAMPzJQpU/LHP/4x11xzTY4++ugmr//www9LUifQtT333HMZMWJE7r333gwdOrTc5QAAAAAAdEnmYoH2VF1d3WyfTrlsu0+fPkk+fgdSU2bMmNGidyTNu88Xv/jFRdpGjBiR5P+2mgcAAAAAAACAluqUYfvgwYOTpMlz2T/88MPU1NQ0eZ77wtZYY40kybLLLrtI27zn5syZ8wkqBQAAAAAAAODTqFOG7ZtuummS5KGHHlqk7eGHH06SDB8+vNn7bL755kmSV199dZG2ec+tvPLKba4TAAAAAAAAgE+nThm2b7HFFll11VVz8803Z+zYsY3Pz5gxIxdeeGEqKyuz1157NT4/derUvPbaa5k6deoC99l7773TvXv3XH755ZkyZcoC9/nDH/6QJNlpp506eDTAp11VVVUGDRqUqqqqcpcCAAAAANBlmYsFSq1QLBaL5S6iKY899lgOP/zwVFVVZdddd02fPn1y5513ZsKECTn++ONz1FFHNfY977zzcv7552fUqFH5zne+s8B9/vrXv+bMM8/Mcsstly996Uvp3r177rvvvkycODFf+9rXcsYZZyy2hpqamg4bHwAAAAAAAACdU3V1dbN9KktQR5tsvvnmufLKK3PuuefmtttuS21tbdZee+0cd9xx2X333Vt8nwMPPDArr7xy/vSnP+WWW25JfX191l577Rx55JH56le/2oEjAAAAAAAAAKCr6rQr2zsDK9uB9vDiiy9m3333zdVXX53111+/3OUAAAAAAHRJ5mKB9tSSle2d8sx2gK6ktrY2b7/9dmpra8tdCgAAAABAl2UuFig1YTsAAAAAAAAAtJKwHQAAAAAAAABaSdgOAAAAAAAAAK1UKBaLxXIX0VnV1NSUuwSgC5g+fXqee+65DB06NH379i13OQAAAAAAXZK5WKA9VVdXN9tH2L4EwnYAAAAAAACAT5+WhO22kQfoYJMmTcoZZ5yRSZMmlbsUAAAAAIAuy1wsUGrCdoAO9u677+acc87Ju+++W+5SAAAAAAC6LHOxQKkJ2wEAAAAAAACglYTtAAAAAAAAANBKwnYAAAAAAAAAaCVhO0AH69+/fw444ID079+/3KUAAAAAAHRZ5mKBUisUi8ViuYvorGpqaspdAgAAAAAAAAAlVl1d3WwfK9sBOtisWbMyduzYzJo1q9ylAAAAAAB0WeZigVITtgN0sH//+9/Zaqut8u9//7vcpQAAAAAAdFnmYoFSE7YDAAAAAAAAQCsJ2wEAAAAAAACglYTtAAAAAAAAANBKwnaADlYoFNK9e/cUCoVylwIAAAAA0GWZiwVKrVAsFovlLqKzqqmpKXcJAAAAAAAAAJRYdXV1s32sbAcAAAAAAACAVhK2A3Swl19+Odttt11efvnlcpcCAAAAANBlmYsFSk3YDtDBZs+eneeffz6zZ88udykAAAAAAF2WuVig1ITtAAAAAAAAANBKwnYAAAAAAAAAaCVhOwAAAAAAAAC0krAdoIOtvvrq+fOf/5zVV1+93KUAAAAAAHRZ5mKBUisUi8ViuYvorGpqaspdAgAAAAAAAAAlVl1d3WwfK9sBOtg777yTCy64IO+88065SwEAAAAA6LLMxQKlJmwH6GBvv/12Tj311Lz99tvlLgUAAAAAoMsyFwuUmrAdAAAAAAAAAFpJ2A4AAAAAAAAArSRsBwAAAAAAAIBWErYDdLBll102I0eOzLLLLlvuUgAAAAAAuixzsUCpFYrFYrHcRXRWNTU15S4BAAAAAAAAgBKrrq5uto+V7QAdrLa2Nu+9915qa2vLXQoAAAAAQJdlLhYoNWE7QAd78cUX8//+3//Liy++WO5SAAAAAAC6LHOxQKkJ2wEAAAAAAACglYTtAAAAAAAAANBKwnYAAAAAAAAAaCVhOwAAAAAAAAC0UqFYLBbLXURnVVNTU+4SgC6gvr4+M2fOTO/evdOtW7dylwMAAAAA0CWZiwXaU3V1dbN9KktQB8CnWrdu3bLsssuWuwwAAAAAgC7NXCxQaraRB+hgr732Wr7yla/ktddeK3cpAAAAAABdlrlYoNSE7QAdbMaMGbn33nszY8aMcpcCAAAAANBlmYsFSk3YDgAAAAAAAACtJGwHAAAAAAAAgFYStgMAAAAAAABAKwnbATrYyiuvnF//+tdZeeWVy10KAAAAAECXZS4WKLVCsVgslruIzqqmpqbcJQAAAAAAAABQYtXV1c32sbIdoIPV1NTk73//uzfwAAAAAAB0IHOxQKkJ2wE62Jtvvpkjjzwyb775ZrlLAQAAAADosszFAqUmbAcAAAAAAACAVhK2AwAAAAAAAEArCdsBAAAAAAAAoJWE7QAdbJlllsmwYcOyzDLLlLsUAAAAAIAuy1wsUGqFYrFYLHcRnVVNTU25SwAAAAAAAACgxKqrq5vtY2U7AAAAAAAAALSSsB2ggz333HPp379/nnvuuXKXAgAAAADQZZmLBUpN2A4AAAAAAAAArSRsBwAAAAAAAIBWErYDAAAAAAAAQCsJ2wEAAAAAAACglQrFYrFY7iI6q5qamnKXAHQBs2fPzqRJk7LSSiulZ8+e5S4HAAAAAKBLMhcLtKfq6upm+wjbl0DYDgAAAAAAAPDp05Kw3TbyAB3sjTfeyLe//e288cYb5S4FAAAAAKDLMhcLlJqwHaCDffDBB7n66qvzwQcflLsUAAAAAIAuy1wsUGrCdgAAAAAAAABoJWE7AAAAAAAAALSSsB0AAAAAAAAAWknYDtDBVlhhhZx00klZYYUVyl0KAAAAAECXZS4WKLVCsVgslruIzqqmpqbcJQAAAAAAAABQYtXV1c32sbIdoINNmzYtd999d6ZNm1buUgAAAAAAuixzsUCpCdsBOti4ceOy7777Zty4ceUuBQAAAACgyzIXC5SasB0AAAAAAAAAWknYDgAAAAAAAACtJGwHAAAAAAAAgFYStgN0sO7du2eNNdZI9+7dy10KAAAAAECXZS4WKLVCsVgslruIzqqmpqbcJQAAAAAAAABQYtXV1c32sbIdAAAAAAAAAFpJ2A7QwV544YWss846eeGFF8pdCgAAAABAl2UuFig1YTtAB6urq8v777+furq6cpcCAAAAANBlmYsFSk3YDgAAAAAAAACtJGwHAAAAAAAAgFYStgMAAAAAAABAKxWKxWKx3EV0VjU1NeUuAegCZsyYkRdffDHrr79++vTpU+5yAAAAAAC6JHOxQHuqrq5uto+wfQmE7QAAAAAAAACfPi0J220jD9DBJk6cmP/6r//KxIkTy10KAAAAAECXZS4WKLVOHbY///zzOeKII7Lppptmo402yj777JObbrqpxdc//vjjGTJkyGI/nn322Y4rHuA/3nvvvfzud7/Le++9V+5SAAAAAAC6LHOxQKlVlruAxXn88cdz2GGHpaqqKrvsskv69u2bO++8MyeeeGImTpyYI488ssX3Gj58eIYPH77I8yuuuGJ7lgwAAAAAAADAp0SnDNvr6uryox/9KIVCIVdccUXWX3/9JMkxxxyT/fbbL+edd15GjhyZwYMHt+h+w4cPz3e+850OrBgAAAAAAACAT5NOuY38Y489ljfffDO77rprY9CeJH369MnRRx+durq6XHfddWWsEAAAAAAAAIBPs065sn306NFJkq233nqRtq222mqBPi0xfvz4XHbZZZk9e3ZWWmmlbLnllunfv3/7FAvQjM985jM57LDD8pnPfKbcpQAAAAAAdFnmYoFS65Rh+/jx45Mkq6+++iJt/fr1S3V1dd54440W3+/mm2/OzTff3Pi4Z8+e+c53vpPDDz/8E9cK0JxVVlklZ511VrnLAAAAAADo0szFAqXWKcP2GTNmJEn69u3bZHufPn0yefLkZu/Tv3//nHTSSdluu+2y0korZdq0aXn88cdz9tln56yzzkqfPn2y3377Lfb6fv36paKiU+60DyxFPvroo7z00ktZd911s8wyy5S7HAAAAACALslcLFBqnTJsby/rrLNO1llnncbHvXr1yu6775511103e++9d84777x89atfXWyg/uGHH5aqVKALe+655zJixIjce++9GTp0aLnLAQAAAADokszFAu2purq62T6dctl2nz59kiTTp09vsn3GjBmLXfXeEv/v//2/DB06NO+9916rtqMHAAAAAAAAgKSThu2DBw9OkiaD8A8//DA1NTVNnufeGvPeiTB79uxPdB8AAAAAAAAAPn06Zdi+6aabJkkeeuihRdoefvjhJMnw4cPbfP+6urq8+OKLKRQKGTRoUJvvAwAAAAAAAMCnU6cM27fYYousuuqqufnmmzN27NjG52fMmJELL7wwlZWV2WuvvRqfnzp1al577bVMnTp1gfs888wzKRaLCzxXV1eXX//615k4cWK23nrrLLfcch06FoCKior06dMnFRWd8p9cAAAAAIAuwVwsUGqF4sJpdCfx2GOP5fDDD09VVVV23XXX9OnTJ3feeWcmTJiQ448/PkcddVRj3/POOy/nn39+Ro0ale985zuNz3/xi19Mkmy88cZZYYUVMn369DzxxBMZN25cVlpppVx++eVZeeWVF1tDTU1Nxw0QAAAAAAAAgE5p3rHkS1JZgjraZPPNN8+VV16Zc889N7fddltqa2uz9tpr57jjjsvuu+/eonvst99+efDBBzN69OjU1NSksrIyq622Wo488sgceuih6devXwePAgAAAAAAAICuqNOubO8MrGwH2sNLL72UQw45JH/5y1+y7rrrlrscAAAAAIAuyVws0J5asrLdoRUAHWzOnDl5+eWXM2fOnHKXAgAAAADQZZmLBUpN2A4AAAAAAAAArSRsBwAAAAAAAIBWErYDAAAAAAAAQCsJ2wE62ODBg3PFFVdk8ODB5S4FAAAAAKDLMhcLlFqhWCwWy11EZ1VTU1PuEgAAAAAAAAAoserq6mb7WNkO0MGmTJmS//7v/86UKVPKXQoAAAAAQJdlLhYoNWE7QAebPHlyfvrTn2by5MnlLgUAAAAAoMsyFwuUmrAdAAAAAAAAAFpJ2A4AAAAAAAAArSRsBwAAAAAAAIBWErYDdLB+/fpl9913T79+/cpdCgAAAABAl2UuFii1QrFYLJa7iM6qpqam3CUAAAAAAAAAUGLV1dXN9rGyHaCDzZ07NxMnTszcuXPLXQoAAAAAQJdlLhYoNWE7QAcbO3ZsNtxww4wdO7bcpQAAAAAAdFnmYoFSE7YDAAAAAAAAQCsJ2wEAAAAAAACglYTtAAAAAAAAANBKwnYAAAAAAAAAaKVCsVgslruIzqqmpqbcJQBdQENDQ2pra1NVVZWKCu9xAgAAAADoCOZigfZUXV3dbJ/KEtQB8KlWUVGRHj16lLsMAAAAAIAuzVwsUGre1gPQwV599dXstttuefXVV8tdCgAAAABAl2UuFig1YTtAB5s5c2YefvjhzJw5s9ylAAAAAAB0WeZigVITtgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdoAOtsoqq+Scc87JKqusUu5SAAAAAAC6LHOxQKkVisVisdxFdFY1NTXlLgEAAAAAAACAEquurm62j5XtAB3s/fffz2WXXZb333+/3KUAAAAAAHRZ5mKBUhO2A3SwCRMm5Pjjj8+ECRPKXQoAAAAAQJdlLhYoNWE7AAAAAAAAALSSsB0AAAAAAAAAWknYDgAAAAAAAACtJGwH6GC9e/fOVlttld69e5e7FAAAAACALstcLFBqhWKxWCx3EZ1VTU1NuUsAAAAAAAAAoMSqq6ub7WNlO0AHa2hoyJw5c9LQ0FDuUgAAAAAAuixzsUCpCdsBOtiYMWMyaNCgjBkzptylAAAAAAB0WeZigVKrbK8bvfTSS/nLX/6SV199NYVCIeuss04OP/zwrLXWWu31EgAAAAAAAADQKbTLyvbbbrstX/nKV3LXXXeloqIis2fPzvXXX5899tgjDzzwQHu8BAAAAAAAAAB0Gu0Stp911lnZeuut88ADD+Tqq6/OzTffnGuvvTa9evXKb3/72/Z4CQAAAAAAAADoNFoUtv/9739fbNucOXMyadKk7Lfffundu3fj8+uvv34233zzvPbaa5+8SgAAAAAAAADoRFoUtp922mnZd999M2bMmEXaevTokb59+2b06NELPP/RRx/lxRdfzMCBA9unUoCl1HrrrZcxY8ZkvfXWK3cpAAAAAABdlrlYoNQqW9LpyiuvzE9/+tN87Wtfy1e+8pV897vfTXV1dWP7/vvvnz/84Q8ZO3ZsNthgg8yePTv33HNPJk2alO9973sdVjzA0qB79+5ZeeWVy10GAAAAAECXZi4WKLUWrWzfeOONc+211+ZHP/pR7rzzzowcOTJXXnllisVikuT444/PD37wg7z22mu5+OKLc/nll6ehoSGnnnpqjjjiiA4dAEBnN378+Bx88MEZP358uUsBAAAAAOiyzMUCpVYozkvMW+iDDz7Ib37zm1x77bUZMmRITj311GyyySaN7TNmzEiS9OnTp30rLYOamppylwB0Ac8991xGjBiRe++9N0OHDi13OQAAAAAAXZK5WKA9zb/T++K0aGX7/JZbbrn89Kc/zd///vdUVVXlG9/4Rn74wx9m6tSpST4O2btC0A4AAAAAAAAAi9PqsH2eDTbYIH//+9/z05/+NA888EB23HHHXHrppWloaGjP+gAAAAAAAACg02lV2P7ee+/l0Ucfze23357nn38+c+fOzT777JM77rgju+++e379619njz32yBNPPNFR9QIAAAAAAABA2bXozPa5c+fmF7/4Ra6++urU19enWCymUChkhRVWyA9/+MOMHDkySfLSSy/lpz/9aZ5++unsvPPOOemkk7LCCit0+CA6ijPbgfYwZcqUXHnlldl///2X6n8TAQAAAAA6M3OxQHtqyZntLQrbzzzzzFx++eXZaqutsvfee2fZZZfNuHHjcskll2Ty5Mn529/+lg033LCx/w033JCzzz47M2fOzNFHH53DDz/8k42kTITtAAAAAAAAAJ8+7Ra2b7HFFhk0aFCuu+66BZ5/+eWXs8cee+SQQw7JD37wgwXaZs6cmfPPPz+XX355xowZ08rSOwdhO9AePvzwwzzyyCPZcsst069fv3KXAwAAAADQJZmLBdpTS8L2Fp3ZPmvWrAwYMGCR5wcOHJgkmTNnziJtvXv3zg9+8INcf/31LXkJgC5r/Pjx+cY3vpHx48eXuxQAAAAAgC7LXCxQai0K2zfbbLM89NBDufjii/P++++ntrY2r776ak455ZQUCoUMHz58sdeutdZa7VYsAAAAAAAAAHQGlS3p9OMf/zhHHHFEzj777PzmN79ZoG3ffffNyJEjO6Q4AAAAAAAAAOiMWhS2r7zyyrn55ptz5513ZuzYsZk2bVoGDRqUbbbZJuuuu25H1wgAAAAAAAAAnUqLwvYkqaioyMiRI61iB2ilHj16ZMiQIenRo0e5SwEAAAAA6LLMxQKlVigWi8VyF9FZ1dTUlLsEAAAAAAAAAEqsurq62T4VJagDAAAAAAAAALoUYTtABxszZkxWW221jBkzptylAAAAAAB0WeZigVITtgN0sIaGhsyYMSMNDQ3lLgUAAAAAoMsyFwuUmrAdAAAAAAAAAFpJ2A4AAAAAAAAArdSmsH3SpEn54IMPmu334YcfZtKkSW15CQAAAAAAAADotNoUtm+//fb59a9/3Wy/s846KzvssENbXgKgy1hnnXVy7733Zp111il3KQAAAAAAXZa5WKDUKttyUbFYTLFYbHFfgE+zZZZZJkOHDi13GQAAAAAAXZq5WKDUOvTM9pqamvTs2bMjXwKg05swYUK+//3vZ8KECeUuBQAAAACgyzIXC5Rai1e2P/HEEws8fu+99xZ5bp66urqMGzcuDz74oK06gE+9999/P3/6059ywAEHZJVVVil3OQAAAAAAXZK5WKDUWhy2H3jggSkUCo2PH3rooTz00EOL7V8sFlMoFHLooYd+sgoBAAAAAAAAoJNpcdi+5557Nobt//jHP7Laaqtlk002abJvVVVVll9++YwYMSKf/exn26dSAAAAAAAAAOgkWhy2//KXv2z8+h//+Ec22WST/OIXv+iQogAAAAAAAACgM2tx2D6/l156qb3rAOiyBgwYkKOOOioDBgwodykAAAAAAF2WuVig1ArFYrH4SW7wwQcf5IUXXkhNTU1WWmmlxW4tvzSqqakpdwkAAAAAAAAAlFh1dXWzfSraevP33nsvxx9/fLbaaqscfvjh+f73v5+rr766sf2KK67I8OHD8+STT7b1JQC6hBkzZmT06NGZMWNGuUsBAAAAAOiyzMUCpdamsH3q1KnZb7/9cvvtt2fIkCH5xje+kYUXyO+www6ZOXNmbr/99nYpFGBp9dprr2XkyJF57bXXyl0KAAAAAECXZS4WKLU2ndl+4YUXZsKECTn22GNz9NFHJ0kuv/zyBfqssMIKWXPNNa1sBwAAAAAAAKDLadPK9nvuuSdrrbVWY9C+OCuvvHImT57cpsIAAAAAAAAAoLNqU9j+7rvvZp111mm2X/fu3TNz5sy2vAQAAAAAAAAAdFptCtv79u2bKVOmNNvvjTfeyMCBA9vyEgBdRmVlZT7zmc+ksrJNJ3cAAAAAANAC5mKBUmvTvzYbb7xx7r///rzyyiuLXeH+1FNP5eWXX87uu+/+iQoEWNp99rOfzSuvvFLuMgAAAAAAujRzsUCptWll+yGHHJL6+vocddRRefTRR9PQ0LBA+5NPPpmTTjoplZWVOfjgg9ujTgAAAAAAAADoNNoUtg8bNiwnn3xyJk2alEMPPTTDhw9PoVDIP//5z2y++eY58MAD8/bbb+fkk0/O+uuv3941AyxVxo4dm89//vMZO3ZsuUsBAAAAAOiyzMUCpdamsD1JDjrooFx55ZUZMWJEGhoaUiwWM2PGjHz00UfZaqutctlll+Ub3/hGe9YKsFSaO3duxo0bl7lz55a7FAAAAACALstcLFBqbTqzva6uLpWVldloo41y4YUXplgspqamJg0NDamurk63bt0a+06ePDkrrrhiuxUMAAAAAAAAAOXWppXtJ5544gKPC4VC+vfvnwEDBiwQtE+aNCkHHnjgJ6sQAAAAAAAAADqZNoXtt99+e3784x8vsc+ECRNywAEHZMKECW0qDAAAAAAAAAA6qzaF7V/+8pdz9dVX57e//W2T7W+99VYOOuigTJo0KT/4wQ8+UYEAS7s11lgjV199ddZYY41ylwIAAAAA0GWZiwVKrVAsFoutvai2tjbf+ta38thjj+XEE0/MYYcd1tj2xhtv5Jvf/GYmT56cU045JQcddFC7FlxKNTU15S4BAAAAAAAAgBKrrq5utk+bVrZXVVXlggsuyIYbbpizzz4711xzTZJk3LhxOfDAAzN58uT86Ec/WqqDdoD2Mnny5Pzyl7/M5MmTy10KAAAAAECXZS4WKLU2he1Jsswyy+SPf/xj1lxzzZx22mn505/+lIMOOijvvPNOTj311BxwwAHtWSfAUmvKlCn59a9/nSlTppS7FAAAAACALstcLFBqbQ7bk6Rfv37585//nBVWWCFnn3123nvvvfzkJz/JN77xjXYp7vnnn88RRxyRTTfdNBtttFH22Wef3HTTTW2+X21tbfbYY48MGTIkI0eObJcaAQAAAAAAAPj0qWxJpyeeeGKJ7UcddVROP/307LzzzllrrbUW6b/pppu2urDHH388hx12WKqqqrLLLrukb9++ufPOO3PiiSdm4sSJOfLII1t9zwsvvDBvvvlmq68DAAAAAAAAgPm1KGw/8MADUygUltinWCzmpptuanLl+dixY1tVVF1dXX70ox+lUCjkiiuuyPrrr58kOeaYY7LffvvlvPPOy8iRIzN48OAW3/OFF17IRRddlB/+8Ic588wzW1UPAAAAAAAAAMyvRWH7nnvu2WzY3p4ee+yxvPnmm9l7770bg/Yk6dOnT44++uiccMIJue666/Ld7363RfebO3dufvjDH2bo0KE54IADhO1ASS233HLZd999s9xyy5W7FAAAAACALstcLFBqLQrbf/nLX3Z0HQsYPXp0kmTrrbdepG2rrbZaoE9LnH/++XnjjTdyww03lPRNAwBJsvrqq+cPf/hDucsAAAAAAOjSzMUCpVbRlosuu+yyXH311e1dS6Px48cn+fgfxYX169cv1dXVeeONN1p0r+effz4XX3xxvvOd72SNNdZozzIBWmT27Nl5/fXXM3v27HKXAgAAAADQZZmLBUqtRSvbF/arX/0q22yzTfbdd9/2ridJMmPGjCRJ3759m2zv06dPJk+e3Ox95s6dm5NPPjnrrbdeDj300FbX0a9fv1RUtOn9CACNnn766QwbNixPPfVUNtlkk3KXAwAAAADQJZmLBUqtTWH7gAED0qNHj/aupd2dc845eeONN3LttdemW7durb7+ww8/7ICqgE+badOmNX6uqakpczUAAAAAAF2TuVigPVVXVzfbp03Ltrfeeus89dRTmTt3blsub1afPn2SJNOnT2+yfcaMGYtd9T7PCy+8kEsuuSRHHnlkhgwZ0u41AgAAAAAAAPDp1aaw/YQTTki3bt1y4okn5p133mnvmjJ48OAkafJc9g8//DA1NTVNnuc+v5dffjn19fU577zzMmTIkAU+kmTcuHEZMmRIhg0b1u71AwAAAAAAANC1tWkb+d/85jdZd911889//jP3339/1l9//ay00krp3r37In0LhUJ+/vOft+r+m266af7whz/koYceyi677LJA28MPP5wkGT58+BLvMXjw4Oyzzz5Ntl1zzTXp27dvdtxxx/Tq1atVtQEAAAAAAABAoVgsFlt70brrrtvyFygUMnbs2Fbdv66uLiNHjsyUKVPy97//Peutt16Sj7eP32+//TJu3LjcfPPNWWONNZIkU6dOTU1NTaqrq9O/f/9m7z9kyJCsscYauf3225fYz3keAAAAAAAAAJ8+LTmzvU0r2y+77LK2XNZilZWVOfPMM3P44Ydn//33z6677po+ffrkzjvvzIQJE3L88cc3Bu1JcsUVV+T888/PqFGj8p3vfKdDawMAAAAAAACANoXtzW3h3h4233zzXHnllTn33HNz2223pba2NmuvvXaOO+647L777h3++gDt5ZVXXskxxxyTCy64IOuss065ywEAAAAA6JLMxQKl1qZt5D8tbCMPtIfnnnsuI0aMyL333puhQ4eWuxwAAAAAgC7JXCzQnlqyjXxFCeoAAAAAAAAAgC6lTdvIJ8msWbPyl7/8JXfffXfeeOONzJw5s8l+hUIhL774YpsLBAAAAAAAAIDOpk1h+/Tp07P//vvn1VdfTbdu3VJVVZVisZiBAwfmvffey7yd6VdaaaV2LRYAAAAAAAAAOoM2bSN/0UUX5ZVXXslXv/rVPPXUU9lxxx1TKBTy4IMP5tlnn80vf/nLDBgwIEOHDs3dd9/d3jUDLFVWW221/P73v89qq61W7lIAAAAAALosc7FAqRWK85aht8JOO+2UmTNn5u67705VVVVOPvnkXH/99Rk7dmxjn1dffTV77rlnjj/++Bx++OHtWnSp1NTUlLsEAAAAAAAAAEqsurq62T5tWtk+adKkrL/++qmqqkry8bnsSVJbW9vYZ+21187w4cNz/fXXt+UlALqM9957LxdffHHee++9cpcCAAAAANBlmYsFSq1NYXuPHj3SvXv3xsd9+vRJkkX+8erXr18mTJjwCcoDWPpNnDgxJ510UiZOnFjuUgAAAAAAuixzsUCptSlsX3HFFTNp0qTGx2uuuWaSZPTo0Y3P1dXVZcyYMVluueU+WYUAAAAAAAAA0Mm0KWwfNmxYXnnllUyfPj1JMmLEiFRWVuZnP/tZrrzyytxzzz059thjM3HixGy66abtWjAAAAAAAAAAlFtlWy7aeeed88ILL+SZZ57JNttskxVWWCHf/e5386tf/So//elPkyTFYjEDBgzIiSee2K4FAwAAAAAAAEC5tSlsHzZsWP72t78t8NwhhxySTTbZJP/85z8zbdq0DB48OHvvvbdt5IFPvT59+mTEiBHp06dPuUsBAAAAAOiyzMUCpVYoFovFchfRWdXU1JS7BAAAAAAAAABKrLq6utk+bTqzHYCWq6+vz7Rp01JfX1/uUgAAAAAAuixzsUCptWgb+UmTJn2iF1lppZU+0fUAS7N//etfGTFiRO69994MHTq03OUAAAAAAHRJ5mKBUmtR2P7FL34xhUKhTS9QKBTy4osvtulaAAAAAAAAAOiMWhS2z7Pyyiunqqqqo2oBAAAAAAAAgKVCi8L2ioqKNDQ0ZPr06Rk5cmR23333fP7zn+/o2gAAAAAAAACgU6poSaf7778/P/jBD7Lyyivnb3/7Ww444IDssMMOOeecc/L66693dI0AAAAAAAAA0KkUisVisTUXvPbaa7nhhhty8803Z9KkSSkUCllvvfWyxx57ZJdddsmAAQM6qtaSq6mpKXcJQBdQW1ubDz/8MP369XMUBwAAAABABzEXC7Sn6urqZvu0Omyf35NPPpkbb7wxd9xxRz788MNUVlZms802y957751ddtmlrbftNITtAAAAAAAAAJ8+LQnbW7SN/OIMGzYsZ5xxRh566KGcf/75GTZsWB5++OH87Gc/+yS3BehSxo0bl/333z/jxo0rdykAAAAAAF2WuVig1D5R2J4kc+fOzT333JPrr78+Tz/9dJKkR48en7gwgK5i2rRpuf322zNt2rRylwIAAAAA0GWZiwVKrbKtFz7++OO58cYbc+edd2bGjBnp1q1btthii+y+++750pe+1J41AgAAAAAAAECn0qqw/aWXXspNN92UW265JVOmTEmxWMwGG2yQ3XffPbvuumv69+/fUXUCAAAAAAAAQKfRorD9oosuyk033ZRXX301xWIxq666ao488sjsvvvuWWONNTq6RgAAAAAAAADoVArFYrHYXKd11103hUIh6623XnbfffdssskmrXqRz33uc20usJxqamrKXQLQBbzzzju5+uqrs++++2b55ZcvdzkAAAAAAF2SuVigPVVXVzfbp1Vhe1sUCoW8+OKLbbq23ITtAAAAAAAAAJ8+LQnbW7SN/KabbvqJiwH4tPrggw9y3333Zbvttstyyy1X7nIAAAAAALokc7FAqbVoZfunlZXtQHt47rnnMmLEiNx7770ZOnRoucsBAAAAAOiSzMUC7aklK9srSlAHAAAAAAAAAHQpwnYAAAAAAAAAaCVhOwAAAAAAAAC0krAdoIP17Nkzn/vc59KzZ89ylwIAAAAA0GWZiwVKrVAsFovlLqKzqqmpKXcJAAAAAAAAAJRYdXV1s32sbAcAAAAAAACAVhK2A3Sw559/PiuuuGKef/75cpcCAAAAANBlmYsFSq1FYft6662XU045pfHx+eefn7vvvrvDigLoSorFYubOnRundgAAAAAAdBxzsUCptShsLxaLC/zDdP755+euu+7qsKIAAAAAAAAAoDNrUdi+zDLLZOrUqR1dCwAAAAAAAAAsFSpb0mnIkCF55JFHcv7552eVVVZJkrz55pu5/vrrW/Qie+65Z1vrAwAAAAAAAIBOp1BswcEVDz/8cEaNGpVZs2alUCikWCymUCg0e/N5/caOHdsuxZZaTU1NuUsAuoBZs2Zl/PjxGTx4cHr16lXucgAAAAAAuiRzsUB7qq6ubrZPi8L2JHn77bfzyCOP5O23387555+f9dZbL9tvv32LChk1alSL+nU2wnYAAAAAAACAT592Ddvnt+6662avvfbKL37xizYVtrQQtgPt4a233spZZ52V73//+1l11VXLXQ4AAAAAQJdkLhZoTy0J2yvacuPLLrssRxxxRFsuBfjUmTp1ai6//PJMnTq13KUAAAAAAHRZ5mKBUqtsy0XDhw9f5LkZM2akUCikd+/en7goAAAAAAAAAOjM2hS2z/PAAw/kr3/9a55++ul89NFHSZJevXpl2LBhOeCAA7LNNtu0S5EAAAAAAAAA0Jm0OWz/xS9+kcsuuyzzjnzv27dvkmT69Ol54IEH8uCDD+aggw7KySef3D6VAgAAAAAAAEAn0aaw/dZbb82ll16az3zmMznqqKOyxx57NIbtM2bMyA033JDf/e53ueyyyzJ06NDsvPPO7Vo0wNJk4MCBOf744zNw4MBylwIAAAAA0GWZiwVKrVCctzS9FQ444ICMGTMm119/fdZYY40m+4wbNy577rlnPve5z+Wvf/3rJy60HGpqaspdAgAAAAAAAAAlVl1d3Wyfirbc+KWXXsrmm2++2KA9SdZYY41svvnmGTt2bFteAqDLmD59eh566KFMnz693KUAAAAAAHRZ5mKBUmtT2F5bW5tevXo1269Xr16pra1ty0sAdBmvv/56dt9997z++uvlLgUAAAAAoMsyFwuUWpvC9tVWWy1PPPFEZs2atdg+s2bNyhNPPJHVVlutzcUBAAAAAAAAQGfUprB95MiRef/99zNq1Ki89dZbi7S/+eabGTVqVKZOnZqddtrpExcJAAAAAAAAAJ1JZVsuOuyww3L33Xfn4YcfzsiRI7Phhhtm5ZVXTqFQyIQJEzJmzJjU19dngw02yKGHHtreNQMAAAAAAABAWbUpbO/Zs2f++te/5re//W2uvfbaPPvss3n22WcXaN9vv/3y3e9+Nz179myvWgGWSlVVVRk0aFCqqqrKXQoAAAAAQJdlLhYotUKxWCx+khvMmjUrL7zwQt55550kyfLLL5/Pfvaz6dWrV7sUWE41NTXlLgEAAAAAAACAEquurm62zycO27syYTsAAAAAAADAp09LwvaKEtQB8Kn24osv5rOf/WxefPHFcpcCAAAAANBlmYsFSk3YDtDBamtr8/bbb6e2trbcpQAAAAAAdFnmYoFSE7YDAAAAAAAAQCsJ2wEAAAAAAACglYTtAAAAAAAAANBKhWKxWCx3EZ1VTU1NuUsAuoDp06fnueeey9ChQ9O3b99ylwMAAAAA0CWZiwXaU3V1dbN9hO1LIGwHAAAAAAAA+PRpSdj+ibaRnzp1ai655JJ873vfy2GHHZY//vGPjW3//ve/c/fdd2fWrFmf5CUAlnqTJk3KGWeckUmTJpW7FAAAAACALstcLFBqbQ7bb7nlluywww751a9+lVtuuSWPPPJIXn/99cb2N954I6NGjcodd9zRLoUCLK3efffdnHPOOXn33XfLXQoAAAAAQJdlLhYotTaF7U8++WS+//3vp3v37jn55JNzzTXXZOHd6Lfbbrv07ds3//znP9ulUAAAAAAAAADoLCrbctEf/vCHVFZW5pJLLsm6667bZJ+qqqqsueaaefXVVz9RgQAAAAAAAADQ2bRpZftzzz2XoUOHLjZon2fFFVfMO++806bCAAAAAAAAAKCzalPYPnv27FRXVzfbb8aMGSkUCm15CYAuo3///jnggAPSv3//cpcCAAAAANBlmYsFSq1N28ivtNJKefnll5fYp66uLi+//HJWX331NhUG0FWsuuqqOffcc8tdBgAAAABAl2YuFii1Nq1sHzFiRN58881cccUVi+3zl7/8Jf+/vTuPj6K+/zj+nmwuIByLnCFRUCwKCoiAoCkVpCpyeVfFVjywCp5UEUpbq1Zoq6IiqPXBT7ECWm8ISqUiFFEUATlEioJCSIBwrYEQIHvM74/NLpvsbrKbZHeSzev5KI9NZr4z+5kFJJ339/uZ/fv3a/DgwdUuDgASwdGjR7V582YdPXrU6lIAAAAAAAAAIGFxLxZAvFUrbB8zZoxat26tv/zlL3rwwQf173//W5J08OBBLV26VJMnT9bTTz+t9u3b6ze/+U2tFgwA9c13332nCy64QN99953VpQAAAAAAAABAwuJeLIB4q1Yb+ZYtW+qVV17Rfffdp9zcXC1cuFCStHz5ci1fvlymaerUU0/VjBkz1LRp01otGAAAAAAAAAAAAAAAq1UrbJek0047TfPnz9cnn3yizz//XAUFBXK73WrXrp3OP/98XXLJJbLZbLVZKwAAAAAAAAAAAAAAdUK1wvapU6eqWbNmGjdunAYPHsxz2QEAAAAAAAAAAAAADUq1ntk+d+5cbdmypbZrAYCEZBiGUlNTZRiG1aUAAAAAAAAAQMLiXiyAeKvWyva2bdvKNM3argUAElL37t21Z88eq8sAAAAAAAAAgITGvVgA8Vatle2//OUvtWrVKhUXF9d2PQAAAAAAAAAAAAAA1HnVCtvvuusuZWZm6vbbb9e3335b2zUBQELZsmWLLrzwQh6/AQAAAAAAAAAxxL1YAPFWrTbyY8eOVWpqqtauXaurrrpKrVu3VmZmplJTU4PGGoahV199tcaFAkB9dezYMW3YsEHHjh2zuhQAAAAAAAAASFjciwUQb9UK21etWuX/2jRN7d27V3v37g051jCM6lUGAAAAAAAAAAAAAEAdVa2wfcmSJbVdBwAAAAAAAAAAAAAA9Ua1wvYOHTrUdh0AAAAAAAAAAAAAANQbSVYXAACJ7pRTTtHLL7+sU045xepSAAAAAAAAACBhcS8WQLwZpmmaNT3JoUOHdOTIEYU7VWZmZk3fwhIOh8PqEgAAAAAAAAAAAAAAcWa326scU6028pK0b98+PfPMM1qyZImKiorCjjMMQ99++2113wYA6r29e/fqrbfe0jXXXKM2bdpYXQ4AAAAAAAAAJCTuxQKIt2q1kd+7d6+uuuoqvfPOO0pLS1PLli1lmqZ69Oihk046yb/CvWfPnjr33HNrtWAAqG92796tP/7xj9q9e7fVpQAAAAAAAABAwuJeLIB4q1bY/sILL2jv3r2655579N///lcDBgyQYRh64403tGLFCr322ms69dRTZRiGZs2aVe3iNmzYoDFjxqhPnz7q2bOnrr76auXm5kZ8/Jdffqnf/e53GjJkiHr37q0ePXrokksu0aRJk/TDDz9Uuy4AAAAAAAAAAAAAQMNWrbD9008/VVZWlsaOHRtyf58+ffTyyy9r8+bNev7556tV2JdffqkbbrhBq1ev1iWXXKLrr79eDodDDzzwgF588cWIzvH5559rzZo1Ov3003XFFVdo1KhR6tSpk+bPn6+RI0fqiy++qFZtAAAAAAAAAAAAAICGrVrPbC8sLNSFF17o/z4pyZvZl5aWKjU1VZLUtm1bnXfeeVq0aJHuv//+qM7vcrn0hz/8QYZhaO7cuerataskady4cbruuuv03HPP6dJLL1XHjh0rPc/YsWNDvvfKlSs1evRoPfHEE3rnnXeiqg0AAAAAAAAAAAAAgGqtbM/IyPA/l12SmjVrJskbwgdKTU0N2haJL774Qnl5eRo2bJg/aPe979ixY+VyufTuu+9WeZ60tLSQ2/v376/mzZsrLy8v6toAIFrNmjXTpZde6v9vJQAAAAAAAACg9nEvFkC8VStsb9++vQoKCvzfn3766ZKk//73v/5tR48e1dq1a9W6deuoz79q1SpJUk5OTtC+Cy64oNyY6vj6669VVFTkrxsAYqlTp06aN2+eOnXqZHUpAAAAAAAAAJCwuBcLIN6q1Ua+X79++uc//6n9+/erVatWGjRokBo1aqS//e1v2r17t9q1a6cFCxbowIEDuv7666M+//bt2yVJp5xyStC+5s2by263a8eOHRGf78svv9SqVatUWlqqHTt2aOnSpbLb7Zo0aVLUtQFAtJxOp4qKitS8eXOlpKRYXQ4AAAAAAAAAJCTuxQKIt2qF7SNGjNCePXu0bds2tWrVSi1atNCjjz6qSZMm6f/+7/9kGIZM09Tpp58e9fPaJam4uFiS1LRp05D7MzIytGfPnojPt2rVKs2YMcP//SmnnKJp06bprLPOqvS45s2b+59HDwDVtXbtWp177rlas2aNevXqZXU5AAAAAAAAAJCQuBcLIN6qFbafccYZmjZtWrltw4YNU69evfTf//5Xhw4dUseOHTVo0KA6MXPo7rvv1t13362SkhJt3bpVzz//vK6//npNmTJFw4cPD3tcUVFRHKsEkKgOHTrkf3U4HBZXAwAAAAAAAACJiXuxAGqT3W6vcky1wvZwMjMzq9U2vqKMjAxJ0uHDh0PuLy4uDrvqvTKNGzdW9+7dNWPGDF111VX605/+pAsuuEAtW7asUb0AAAAAAAAAAAAAgIalTvZI79ixoySFfC57UVGRHA5HyOe5Ryo5OVnnnXeeSkpKtHHjxmqfBwAAAAAAAAAAAADQMNVoZfvOnTu1Zs0a7d27V6WlpSHHGIahcePGRXXePn366B//+IdWrFihoUOHltv32WefSZL69u1bvaLL7N27V5I3eAcAAAAAAAAAAAAAIBqGaZpmtAeVlpbqD3/4g3JzcyVJlZ3CMAxt3rw5qvO7XC5deumlKiws1JtvvqkzzzxTkrd9/HXXXacff/xRCxcuVKdOnSRJBw8elMPhkN1uL9cS/quvvlLv3r1lGEa5869YsUJ33HGH0tPTtXz5cjVu3DhkHTzPA0BtcLvdOnLkiJo0aSKbzWZ1OQAAAAAAAACQkLgXC6A2xeyZ7dOnT9eCBQvUvHlzDR8+XJ06dQobWFdHcnKy/vKXv+i2227TDTfcoGHDhikjI0OLFy9Wfn6+7rvvPn/QLklz587VjBkzdNddd+nuu+/2b7/zzjtlt9t19tlnq127djp+/Li2bNmir776SikpKfrLX/5Sq3UDQCg2m03NmjWzugwAAAAAAAAASGjciwUQb9UK2xcuXKhmzZrp3XffVYcOHWq7JklSv379NG/ePE2fPl2LFi2S0+lU586dde+992rEiBERnePuu+/Wp59+qjVr1ujgwYMyDEPt27fXNddco5tuukmnn356TGoHgEDbtm3ThAkT9Pe//12nnXaa1eUAAAAAAAAAQELiXiyAeKtWG/mzzz5bOTk5euGFF2JRU51BG3kAtWH9+vUaOHCgli5dqh49elhdDgAAAAAAAAAkJO7FAqhNkbSRT6rOiTMzM3X06NHqHAoAAAAAAAAAAAAAQL1XrbD96quv1oYNG7R79+7argcAAAAAAAAAAAAAgDqvWmH7rbfeqgsvvFBjxozRl19+qWp0ogcAAAAAAAAAAAAAoN6K6JntF110Ucjtu3btkiQlJyerdevWMgwj+A0MQx9//HENy7QGz2wHUBv279+v999/X5dffrlatWpldTkAAAAAAAAAkJC4FwugNkXyzPaIwvYzzjijRoX873//q9HxViFsBwAAAAAAAAAAAICGp9bC9oaKsB1AbXA4HPrPf/6jX/7ylxH9hxkAAAAAAAAAED3uxQKoTZH8d6Raz2wHAEQuLy9Pd9xxh/Ly8qwuBQAAAAAAAAASFvdiAcQbYTsAAAAAAAAAAAAAAFFKjmSQy+VSUVGRUlNT1bRp06D9DodDTz/9tJYtWyaHw6E2bdro4osv1rhx45SRkVHrRQMAAAAAAAAAAAAAYKWIVra/9957ysnJ0auvvhq07/Dhw7ruuuv01ltvae/evXI6nSooKNDs2bN18803y+Vy1XrRAAAAAAAAAAAAAABYKaKw/csvv5RhGLr22muD9r344ovasWOH0tPT9cc//lG5ubmaMWOGsrKy9M033+jtt9+u9aIBoD5p3LixevfurcaNG1tdCgAAAAAAAAAkLO7FAog3wzRNs6pBQ4cOVUpKit5///2gfRdccIEOHjyoBx98ULfccot/+/bt23XZZZepb9++mj17dm3WHDcOh8PqEgAAAAAAAAAAAAAAcWa326scE9HK9v3796tTp05B27du3aoDBw4oKSlJV1xxRbl9HTt2VPfu3fXdd99FWC4AAAAAAAAAAAAAAPVDRGH7kSNH5Ha7g7Z//fXXkqTTTz89ZLLfvn17HTp0qIYlAkD9tn79erVs2VLr16+3uhQAAAAAAAAASFjciwUQbxGF7S1atND27duDtq9Zs0aGYah79+4hj3O5XMrIyKhRgQAAAAAAAAAAAAAA1DURhe3du3fX999/r08//dS/7eDBg/r4448leZ/bHsq2bdvUpk2bWigTAAAAAAAAAAAAAIC6IzmSQaNGjdInn3yicePGaciQIWrZsqU++ugjFRcXq23btho0aFDQMfn5+frxxx81fPjwWi8aAAAAAAAAAAAAAAArRRS2X3DBBRo7dqyef/55zZ8/X4ZhyDRNpaWlaerUqUpJSQk65vXXX5dpmsrJyan1ogEAAAAAAAAAAAAAsJJhmqYZ6eBvvvlG//nPf+RwONS2bVuNGDFC2dnZIcc+88wzKikp0dixY9WiRYvaqjeuHA6H1SUASADHjh3Trl27lJmZqfT0dKvLAQAAAAAAAICExL1YALXJbrdXOSaqsL2hIWwHAAAAAAAAAAAAgIYnkrA9KQ51AECDtmPHDv32t7/Vjh07rC4FAAAAAAAAABIW92IBxBthOwDE2E8//aS33npLP/30k9WlAAAAAAAAAEDC4l4sgHgjbAcAAAAAAAAAAAAAIEqE7QAAAAAAAAAAAAAARImwHQAAAAAAAAAAAACAKBG2A0CMtW3bVhMmTFDbtm2tLgUAAAAAAAAAEhb3YgHEm2Gapml1EXWVw+GwugQAAAAAAAAAAAAAQJzZ7fYqx7CyHQBi7NChQ1qyZIkOHTpkdSkAAAAAAAAAkLC4Fwsg3gjbASDGfvzxR11zzTX68ccfrS4FAAAAAAAAABIW92IBxBthOwAAAAAAAAAAAAAAUSJsBwAAAAAAAAAAAAAgSoTtAAAAAAAAAAAAAABEibAdAGIsNTVVnTp1UmpqqtWlAAAAAAAAAEDC4l4sgHgzTNM0rS6irnI4HFaXAAAAAAAAAAAAAACIM7vdXuUYVrYDAAAAAAAAAAAAABAlwnYAiLFNmzbp9NNP16ZNm6wuBQAAAAAAAAASFvdiAcQbYTsAxJjL5dKBAwfkcrmsLgUAAAAAAAAAEhb3YgHEG2E7AAAAAAAAAAAAAABRImwHAAAAAAAAAAAAACBKhO0AAAAAAAAAAAAAAETJME3TtLqIusrhcFhdAoAEUFxcrG+//VZdu3ZVRkaG1eUAAAAAAAAAQELiXiyA2mS326scQ9heCcJ2AAAAAAAAAAAAAGh4IgnbaSMPADFWUFCgyZMnq6CgwOpSAAAAAAAAACBhcS8WQLwRtgNAjO3fv18vvPCC9u/fb3UpAAAAAAAAAJCwuBcLIN4I2wEAAAAAAAAAAAAAiBJhOwAAAAAAAAAAAAAAUSJsBwAAAAAAAAAAAAAgSoTtABBjJ510km699VaddNJJVpcCAAAAAAAAAAmLe7EA4s0wTdO0uoi6yuFwWF0CAAAAAAAAAAAAACDO7HZ7lWNY2Q4AMVZSUqL169erpKTE6lIAAAAAAAAAIGFxLxZAvBG2A0CMff/99xo4cKC+//57q0sBAAAAAAAAgITFvVgA8UbYDgAAAAAAAAAAAABAlAjbAQAAAAAAAAAAAACIEmE7AAAAAAAAAAAAAABRImwHgBhLSkpSRkaGkpL4Ty4AAAAAAAAAxAr3YgHEm2Gapml1EXWVw+GwugQAAAAAAAAAAAAAQJzZ7fYqxzC1BwAAAAAAAAAAAACAKBG2A0CM/e9//1P//v31v//9z+pSAAAAAAAAACBhcS8WQLwRtgNAjB0/flxbtmzR8ePHrS4FAAAAAAAAABIW92IBxBthOwAAAAAAAAAAAAAAUSJsBwAAAAAAAAAAAAAgSoTtAAAAAAAAAAAAAABEibAdAGKsY8eOmjt3rjp27Gh1KQAAAAAAAACQsLgXCyDeDNM0TauLqKscDofVJQAAAAAAAAAAAAAA4sxut1c5hpXtABBjhYWFevrpp1VYWGh1KQAAAAAAAACQsLgXCyDeCNsBIMb27Nmjxx57THv27LG6FAAAAAAAAABIWNyLBRBvhO0AAAAAAAAAAAAAAESJsB0AAAAAAAAAAAAAgCgRtgMAAAAAAAAAAAAAECXCdgCIsebNm2vEiBFq3ry51aUAAAAAAAAAQMLiXiyAeDNM0zStLqKucjgcVpcAAAAAAAAAAAAAAIgzu91e5RhWtgNAjJWWlqqgoEClpaVWlwIAAAAAAAAACYt7sQDijbAdAGJs8+bNOvvss7V582arSwEAAAAAAACAhMW9WADxRtgOAAAAAAAAAAAAAECUCNsBAAAAAAAAAAAAAIgSYTsAAAAAAAAAAAAAAFEibAcAAAAAAAAAAAAAIEqGaZqm1UXUVQ6Hw+oSACQAj8cjp9OplJQUJSUxxwkAAAAAAAAAYoF7sQBqk91ur3JMchzqAIAGLSkpSWlpaVaXAQAAAAAAAAAJjXuxAOKNaT0AEGNbt27V8OHDtXXrVqtLAQAAAAAAAICExb1YAPFG2A4AMXbkyBF99tlnOnLkiNWlAAAAAAAAAEDC4l4sgHgjbAcAAAAAAAAAAAAAIEqE7QAAAAAAAAAAAAAARImwHQAAAAAAAAAAAACAKBG2A0CMZWVl6ZlnnlFWVpbVpQAAAAAAAABAwuJeLIB4M0zTNK0uoq5yOBxWlwAAAAAAAAAAAAAAiDO73V7lGFa2A0CMHThwQP/85z914MABq0sBAAAAAAAAgITFvVgA8UbYDgAxlp+fr/vuu0/5+flWlwIAAAAAAAAACYt7sQDijbAdAAAAAAAAAAAAAIAoJVtdQGU2bNig5557TuvWrZPT6VTnzp110003afjw4REdv3r1an388cdatWqVCgoKVFJSog4dOuiiiy7Sb3/7WzVr1izGVwAAAAAAAAAAAAAASER1Nmz/8ssvdeuttyolJUVDhw5V06ZNtXjxYj3wwAMqKCjQHXfcUeU57r33XjkcDp177rkaOXKkDMPQqlWrNGvWLC1evFhvvPGGTjrppDhcDQAAAAAAAAAAAAAgkdTJsN3lcukPf/iDDMPQ3Llz1bVrV0nSuHHjdN111+m5557TpZdeqo4dO1Z6nptuukmXX3652rRp499mmqYeeeQRvf7665oxY4YefvjhWF4KAKhJkya64IIL1KRJE6tLAQAAAAAAAICExb1YAPFWJ5/Z/sUXXygvL0/Dhg3zB+2SlJGRobFjx8rlcundd9+t8jy33357uaBdkgzD0NixYyVJX331Ve0WDgAhdO7cWbm5uercubPVpQAAAAAAAABAwuJeLIB4q5Nh+6pVqyRJOTk5QfsuuOCCcmOqIznZu6DfZrNV+xwAECmPx6Pjx4/L4/FYXQoAAAAAAAAAJCzuxQKItzrZRn779u2SpFNOOSVoX/PmzWW327Vjx45qn/+dd96RdCK4D6d58+ZKSqqT8xEA1CNr167VueeeqzVr1qhXr15WlwMAAAAAAAAACYl7sQDirU6G7cXFxZKkpk2bhtyfkZGhPXv2VOvcmzdv1syZM3XSSSfptttuq3RsUVFRtd4DAAIdOnTI/+pwOCyuBgAAAAAAAAASE/diAdQmu91e5ZgGtWx7586d+u1vfyu3261p06apZcuWVpcEAAAAAAAAAAAAAKiH6uTK9oyMDEnS4cOHQ+4vLi4Ou+o9nIKCAt100006ePCgnnvuOfXr16/GdQIAAAAAAAAAAAAAGqY6ubK9Y8eOkhTyuexFRUVyOBwhn+ceTn5+vn79619r7969euaZZzRw4MDaKhUAAAAAAAAAAAAA0ADVybC9T58+kqQVK1YE7fvss88kSX379o3oXPn5+frNb36jvXv36umnn9bgwYNrr1AAiMCZZ56pjRs36swzz7S6FAAAAAAAAABIWNyLBRBvdTJs79+/v7Kzs7Vw4UJt3rzZv724uFjPP/+8kpOTdcUVV/i3Hzx4UNu2bdPBgwfLnccXtBcWFmratGn65S9/GbdrAACf1NRUdejQQampqVaXAgAAAAAAAAAJi3uxAOLNME3TtLqIUL744gvddtttSklJ0bBhw5SRkaHFixcrPz9f9913n+68807/2Oeee04zZszQXXfdpbvvvtu/fdCgQSooKFDPnj2Vk5MT8n0Cx1fkcDhq74IANFjbt2/Xn//8Z/35z3/2PyYDAAAAAAAAAFC7uBcLoDbZ7fYqxyTHoY5q6devn+bNm6fp06dr0aJFcjqd6ty5s+69916NGDEionMUFBRIktatW6d169aFHFNZ2A4AtaGoqEgLFizQ/fffb3UpAAAAAAAAAJCwuBcLIN7qbNguSd27d9esWbOqHHf33XeHDM23bNkSi7IAAAAAAAAAAAAAAA1cnXxmOwAAAAAAAAAAAAAAdRlhOwAAAAAAAAAAAAAAUSJsB4AYa9eunf74xz+qXbt2VpcCAAAAAAAAAAmLe7EA4s0wTdO0uoi6yuFwWF0CAAAAAAAAAAAAACDO7HZ7lWNY2Q4AMVZUVKRFixapqKjI6lIAAAAAAAAAIGFxLxZAvBG2A0CMbd++XaNGjdL27dutLgUAAAAAAAAAEhb3YgHEG2E7AAAAAAAAAAAAAABRImwHAAAAAAAAAAAAACBKhO0AAAAAAAAAAAAAAESJsB0AYiwtLU1dunRRWlqa1aUAAAAAAAAAQMLiXiyAeDNM0zStLqKucjgcVpcAAAAAAAAAAAAAAIgzu91e5RhWtgMAAAAAAAAAAAAAECXCdgCIsY0bN+rkk0/Wxo0brS4FAAAAAAAAABIW92IBxBthOwDEmMfjUXFxsTwej9WlAAAAAAAAAEDC4l4sgHgjbAcAAAAAAAAAAAAAIEqE7QAAAAAAAAAAAAAARImwHQAAAAAAAAAAAACAKBmmaZpWF1FXORwOq0sAkABKSkr0/fff6/TTT1fjxo2tLgcAAAAAAAAAEhL3YgHUJrvdXuUYwvZKELYDAAAAAAAAAAAAQMMTSdhOG3kAiLH8/Hw9+OCDys/Pt7oUAAAAAAAAAEhY3IsFEG+E7QAQYwcOHND//d//6cCBA1aXAgAAAAAAAAAJi3uxAOKNsB0AAAAAAAAAAAAAgCgRtgMAAAAAAAAAAAAAECXCdgAAAAAAAAAAAAAAokTYDgAx1qpVK915551q1aqV1aUAAAAAAAAAQMLiXiyAeDNM0zStLqKucjgcVpcAAAAAAAAAAACABuC1117Ts88+K4/HowEDBujJJ59UcnJy0Lg5c+bohRde0HfffacpU6ZozJgx5fYvWLBAf/vb3+TxeGSapt58802dfPLJ8boMIGHY7fYqx7CyHQBirLi4WKtWrVJxcbHVpQAAAAAAAABAwqrL92JdLlel+3fs2KGpU6fqww8/1Jo1a7R3717NmTMn5NiePXvq5Zdf1tVXXx20b8OGDXr88cf19ttva+XKlVq8eDEr/YEYImwHgBjbtm2bLr30Um3bts3qUgAAAAAAAAAgYVlxL3bBggU677zz9Itf/EJPPvmkWrZs6Q/7W7ZsqRkzZmj48OF69NFHKz3P/PnzNXToULVp00aGYejmm2/WO++8E3LsWWedpS5duigpKTjmmzlzpsaNG6f27dtLkpo1a6bGjRvX8CoBhBPcewIAAAAAAAAAAABApfbt26f7779fixcv1mmnnaYXXnghaExpaalyc3OrPFdBQYGys7P932dnZys/Pz/qmrZs2aJTTjlFw4YN0+HDh3XxxRdr4sSJstlsUZ8LQNVY2Q4AAAAAAAAAAABEafXq1erevbtOO+00SdKoUaOCxoTaFgnTNKt1nNPp1Pr16/XWW29p0aJFWr16tWbPnl2tcwGoGmE7AAAAAAAAAAAAECXTNGUYRqVjmjRpEtG5OnTooJ07d/q/z8/PV1ZWVtQ1ZWdna/jw4WrUqJEaN26sYcOGae3atVGfB0BkCNsBIMaSk5N10kknKTmZJ3cAAAAAAAAAQCy4PW5tPLxRGf0ytPHwRrk97pi/Z+/evbV+/Xr98MMPkqTXX3+90vG7du3SeeedF3LfiBEj9MEHH2jv3r0yTVOvvPKKrrzyyqhruvrqq7V06VJ5PB653W4tW7ZM3bp1i/o8ACJD2A4AMdatWzd9//33/EADAAAAAAAAADGQuzVXPWb30D1r71HxpcW6Z+096jG7h3K3Vv2s9Jpo06aNnnrqKV133XW65JJLVFJSopSUFDVu3Djk+D179oR9dnrHjh310EMPaciQIerVq5datWqlG2+8UZK0e/duDRgwwD/2zTffVLdu3TR//nxNmTJF3bp104YNGyRJV155pdq1a6f+/fvr5z//udq2basxY8bU8pUD8DHM6j70oQFwOBxWlwAAAAAAAAAAAIAwcrfmavSHo2WqfNxlyNveffZlszW88/CYvf/hw4fVtGlTSdLcuXM1Z84cLVq0KOTYmTNnqnXr1rr22mtjVg+A2mO326scQ9heCcJ2ALVh8+bNuvHGGzVnzhydeeaZVpcDAAAAAAAAAAnB7XGrx+we2lW8K+R+Q4YyMzK1bvQ62ZJCryivqaeeekrz58+Xy+WS3W7XtGnT1KVLl5i8F4D4iiRs5wHCABBjpaWl+vHHH1VaWmp1KQAAAAAAAADqAdM05Tbd8pge/y+36ZZpmv6vA7d7TE/QMVVtr/jLqu01Odfekr1hg3ZJMmWqoLhAK3etVE5WTkx+r373u9/pd7/7XUzODaDuI2wHAAAAAAAAACBBhQtnCW3juz3azxS1q/BIodUlAEhQhO0AAAAAAAAAgColYmhbF0LYWIW2vn1IbElGkpKMJNkMm//rwF91bXvgPsMwyo2rzvYffvpBL6x7ocrPqW2TtnH43QDQEBG2AwAAAAAAAIgrQtu6sb2yzzTU7wMSm9UhbCTbayOcrc3t8Qikq9re0Lk9bs3fOl+7i3fLlBm03/fM9v6Z/S2oDkBDQNgOADHWqVMnvfXWW+rUqZPVpQAAAABAwqnPoW1dCFtjFdpW9fuAxFanwlkZsiXVnXA2VqFtbZwLqI9sSTZNHTBVoz8cLUNGucDdkCFJmjJgimxJNqtKBJDgDNM0g6f6QJLkcDisLgEAAAAAAMRJfQhtrQyG4xnaRvP7gMRmdWibpCR/UJvIoW1tB8AAEG+5W3M1afkk7Sre5d/WIaODpgyYouGdh1tYGYD6zG63VzmGsL0ShO0AasOePXs0e/ZsjR49Wu3atbO6HAAAAMRBXQ1t68pq3nitFia0RSArQtty4WwCh7axCoAJbQEA0XB73Prgmw/09kdv6+pLrtbQs4ayoh1AjUQSttNGHgBirLCwUH//+981ZMgQwnYAABC1uhTaxjsYtiKcDXcNhLYIFK/QNmw4mwChbblriFOrZQAAkNhsSTadYp6ihVMX6ncX/46gHUBcELYDAAAADYTVoW2056pPoW0010Boi0CxDG0jCmfraWgb9hoIbQEAAAAAcUTYDgAx5Pa4te6nddJZ0rqf1uksz1nMqASQEOIV2tZWOFvXQ9vqXgOhLQJZHs7Wo9A2omsgtAUAAAAAAFUgbAci8Nprr+nZZ5+Vx+PRgAED9OSTTyo5Ofivz5w5c/TCCy/ou+++05QpUzRmzJigMd9//70uvPBC3XLLLXrsscfiUT4skrs1V5OWT9Ku4l3S1dL96+/XE9ue0NQBUzW883CrywPqjFiGtrEIZ+tiaFsb10Boi0DVDRFrLZyt46FtYH2EtgAAAAAAAA0XYTsaPJfLFTI499mxY4emTp2qZcuWqXXr1ho1apTmzJmj0aNHB43t2bOnXn75ZT3zzDMhz+V2uzV+/HhddtlltVQ96qrcrbka/eFomTLLbd9dvFujPxyt2ZfNJnCPgdoObWsa9NaX0La2r4HQFoEsX1FbR0LbUOEsoS0AAAAAALWrRYsWuuaaa9SiRQurSwHQQBC2I2EtWLBAjz/+uNLT0zV8+HBNmTJFeXl5ysjIUMuWLfXoo4/qo48+0jnnnKNHH3007Hnmz5+voUOHqk2bNpKkm2++WdOnTw8Ztp911lmSpKSk0Depn3nmGV188cU6cuSIjhw5UvOLRJ3k9rg1afmkoKBdkn/bA0sfUMtGLZWkpHoZ2sYreCa0RSDLV9RaGNpWFc4S2gIAAAAAAEinnHKK/vGPf1hdBoAGhLAdCWnfvn26//77tXjxYp122ml64YUXgsaUlpYqNze3ynMVFBQoOzvb/312drby8/OjrmnTpk365JNPtGDBAj3xxBNRH4/6Y+Wuld7W8ZXYd3Sfhr/DynarWL6iNs6hbTThLKEtAAAAAAAA6qtjx45p165dyszMVHp6utXlAGgACNuRkFavXq3u3bvrtNNOkySNGjVKkydPLjdm1KhR1Tq3aQavVq6K0+nUvffeqxkzZshms1XrfVF/FB4pjGhcm8Zt1DyteZ0PbasbzhLaAgAAAAAAAIinLVu2aODAgVq6dKl69OhhdTkAGgDCdiQk0zRlGEalY5o0aRLRuTp06KCdO3f6v8/Pz1dWVlZU9RQWFmr79u361a9+JUkqKiqSaZr66aef9Nxzz0V1LtR9bZu0jWjcrEtnKScrJ8bVAAAAAAAAAAAAIBZY3oeE1Lt3b61fv14//PCDJOn111+vdPyuXbt03nnnhdw3YsQIffDBB9q7d69M09Qrr7yiK6+8Mqp6srKytHXrVq1fv17r16/XHXfcod/85jcE7Qmqf2Z/ZWZkylDoCR+GDHXI6KD+mf3jXBkAAAAAAAAAAABqC2E7ElKbNm301FNP6brrrtMll1yikpISpaSkqHHjxiHH79mzJ2x7944dO+qhhx7SkCFD1KtXL7Vq1Uo33nijJGn37t0aMGCAf+ybb76pbt26af78+ZoyZYq6deumDRs21P4Fok6zJdk0dcBUSQoK3H3fTxkwRbYkHikAAAAAAAAAAABQXxlmdR5A3UA4HA6rS0ANHD58WE2bNpUkzZ07V3PmzNGiRYtCjp05c6Zat26ta6+9Np4lIsHlbs3VpOWTtKt4l39bh4wOmjJgioZ3Hm5hZQAAAAAAAACQeNavX88z2wHUGrvdXuUYwvZKELbXb0899ZTmz58vl8slu92uadOmqUuXLlaXhQbG7XFr5a6VKjxSqLZN2qp/Zn9WtAMAAAAAAAAAANRxhO01RNgOAAAAAAAAAAAAAA1PJGE7z2wHgBj7/vvvdfHFF+v777+3uhQAAAAAAAAASFjciwUQb4TtABBjJSUlWr16tUpKSqwuBQAAAAAAAAASFvdiAcQbYTsAAAAAAAAAAAAAAFEibAcAAAAAAAAAAAAAIEqE7QAAAAAAAAAAAAAARImwHQBi7OSTT9aLL76ok08+2epSAAAAAAAAACBhcS8WQLwZpmmaVhdRVzkcDqtLAAAAAAAAAAAAAADEmd1ur3IMK9sBIMb279+vWbNmaf/+/VaXAgAAAAAAAAAJi3uxAOKNsB0AYqygoEATJkxQQUGB1aUAAAAAAAAAQMLiXiyAeCNsBwAAAAAAAAAAAAAgSoTtAAAAAAAAAAAAAABEibAdAAAAAAAAAAAAAIAoEbYDQIxlZGRo4MCBysjIsLoUAAAAAAAAAEhY3IsFEG+GaZqm1UXUVQ6Hw+oSAAAAAAAAAAAAAABxZrfbqxzDynYAiDG3261Dhw7J7XZbXQoAAAAAAAAAJCzuxQKIN8J2AIixb775Rh07dtQ333xjdSkAAAAAAAAAkLC4Fwsg3gjbAQAAAAAAAAAAAACIEmE7AAAAAAAAAAAAAABRImwHAAAAAAAAAAAAACBKhO0AAAAAAAAAAAAAAETJME3TtLqIusrhcFhdAoAE4HQ6VVRUpObNmyslJcXqcgAAAAAAAAAgIXEvFkBtstvtVY4hbK8EYTsAAAAAAAAAAAAANDyRhO20kQeAGPvxxx91ww036Mcff7S6FAAAAAAAAABIWNyLBRBvhO0AEGOHDh3Sv//9bx06dMjqUgAAAAAAAAAgYXEvFkC8EbYDAAAAAAAAAAAAABAlwnYAAAAAAAAAAAAAAKJE2A4AAAAAAAAAAAAAQJQI2wEgxtq3b6/HHntM7du3t7oUAAAAAAAAAEhY3IsFEG+GaZqm1UXUVQ6Hw+oSAAAAAAAAAAAAAABxZrfbqxzDynYAiLGffvpJ77//vn766SerSwEAAAAAAACAhMW9WADxRtgOADG2Y8cO3XLLLdqxY4fVpQAAAAAAAABAwuJeLIB4I2wHAAAAAAAAAAAAACBKyVYXUJkNGzboueee07p16+R0OtW5c2fddNNNGj58eETHHzhwQG+//bY2bdqkb775RgUFBZKkLVu2xLJsAAAAAAAAAAAAAECCq7Nh+5dffqlbb71VKSkpGjp0qJo2barFixfrgQceUEFBge64444qz7F161ZNmzZNhmHolFNOUaNGjXT06NE4VA8AAAAAAAAAAAAASGR1Mmx3uVz6wx/+IMMwNHfuXHXt2lWSNG7cOF133XV67rnndOmll6pjx46Vnue0007TnDlzdOaZZyojI0OXXnqpfvzxxzhcAQCckJ6eru7duys9Pd3qUgAAAAAAAAAgYXEvFkC81clntn/xxRfKy8vTsGHD/EG7JGVkZGjs2LFyuVx69913qzxPq1at1KdPH2VkZMSyXACoVJcuXbRs2TJ16dLF6lIAAAAAAAAAIGFxLxZAvNXJsH3VqlWSpJycnKB9F1xwQbkxAAAAAAAAAAAAAADEW50M27dv3y5JOuWUU4L2NW/eXHa7XTt27IhzVQBQPRs2bFC7du20YcMGq0sBAAAAAAAAgITFvVgA8VYnn9leXFwsSWratGnI/RkZGdqzZ0/M62jevLmSkurkfAQA9UjTpk1VWlqqpk2bym63W10OAAAAAAAAACQk7sUCiLc6GbbXFUVFRVaXACABHDp0yP/qcDgsrgYAAAAAAAAAEhP3YgHUpkgm7dTJZdsZGRmSpMOHD4fcX1xcHHbVOwDUKW63Wqxbp+sktVi3TnK7ra4IAAAAAAAAAAAAtaBOhu0dO3aUpJDPZS8qKpLD4Qj5PHcgVp588kn16tVLvXr10uOPPx523L59+3T11Verd+/eOv/88/XFF1/4923btk1XXHGFfv7zn6t///56991341E6LJSSm6vmPXqo5/3363VJPe+/X8179FBKbq7VpQEAAAAAAAAAAKCG6mTY3qdPH0nSihUrgvZ99tlnkqS+ffvGtSYkLpfLVen+zz//XO+8844+/fRTrVy5UkuWLNGSJUtCjn3kkUfUu3dvrV69WjNmzNDtt9/uP/+4ceN0zTXX6NNPP9X8+fP18MMPa9euXbV+PagbUnJz1WT0aBkVfo+N3bvVZPRoAncAAAAAAAAAqGU/+9nP9Nlnn+lnP/uZ1aUAaCDqZNjev39/ZWdna+HChdq8ebN/e3FxsZ5//nklJyfriiuu8G8/ePCgtm3bpoMHD1pRLuqotWvXauTIkRo0aJAuvPBCLViwQJKUl5enzp076+9//7suu+wyvfTSS5We57333tP111+vJk2aKC0tTaNGjQq7Kn3+/Pm67bbbJEm9evVSmzZt/KvbN23apF/+8peSpDZt2uiss87Se++9V1uXi7rE7VbjSZMk05RRYZdhmpJpqvGECUravl3G3r3SoUPS8eOSaVpSLgAAAAAAAAAkgkaNGunMM89Uo0aNrC4FQAORbHUBoSQnJ+svf/mLbrvtNt1www0aNmyYMjIytHjxYuXn5+u+++5Tp06d/OPnzp2rGTNm6K677tLdd99d7lwTJ070f71v376gbRMmTFDLli1jfEWIt6KiIo0fP15vvPGG2rVrpwMHDmjgwIE677zzJHknaJx66qmaMGFClefKz8/X+eef7//+5JNP9gf3gQ4ePCiPx6NWrVr5t2VnZys/P1+SdM455+jNN9/UuHHj9OOPP2rVqlU8DiFBJa9cqaRKuhYYkozCQjXv1Ston5meLjM9XUpPl5mWJqWleb/3vZZtL7etwr6Kr2ajRt4xIfapUSP/+8hmi+GnAgAAAAAAAACxtXPnTj3xxBN68MEHlZ2dbXU5ABqAOhm2S1K/fv00b948TZ8+XYsWLZLT6VTnzp117733asSIERGfJ9TK4cBtd911F2F7Alq1apW2b9+ua6+91r/NNE1t3bpV2dnZSk9P11VXXRXx+QzjxPpks5LVx4HjKo6dOXOm/vjHP2rAgAHq2LGjfvGLXyg5uc7+FUQNGIWFEY0zU1JkOJ3ljz12TMaxY7EoK6J6ygX4AUF8UKjv+z4w1K9knz/UrzhZoGyfkpMlo2IfAAAAAAAAAACI3MGDBzVnzhzdeuuthO0A4qJOJ33du3fXrFmzqhx39913B61o99myZUttl4V6wDRNdevWTR988EHQvry8PDVu3DgoGA8nKytLeXl5/u937typrKysoHG+SRv79+/3r27Pz8/3j83Oztbs2bP946+++moNHDgw4mtC/WG2bRvRuOJ33pHrgguk0lLp+HFv0H78uOR7PXq0/Pe+1+PHZVSxz3c+HT9+Yr8vyA/c5nL56zGcTsnplFFcHKuPJiwzKSl41X3gqvyKK/3Dhfpl24NW/gfsC/U+SqqTT1UBAAAAAAAAAAB1WJ0O24Hq6tu3r3744QctX75cAwYMkCRt3LhRXbp0CTl+zZo1euyxx/T+++8H7Rs5cqQmTJigW2+9VcnJyZo7d65+//vfhzzPyJEjNWvWLE2cOFFr165VYWGh+vXrJ0nau3evWrduLcMwtGTJEm3ZskVXX3117Vww6hRX//7yZGbK2L3b+4z2CkzDkJmZKVf//t7V3L4QuVkzxf2p7S7XiWA+mlA/MLgPeA0b+Ae+lo0zjh/3l2F4PFJJiYySknh/ApLkXW0fqs1+hcA/aDV/uH0hQv1wLf9FhwsAAAAAAAAAAOol7vAjIbVo0ULz5s3Tww8/rMmTJ8vpdCorK0tz5swJOX7nzp1KT08PuS8nJ0eXX365cnJyJElXXnmlBg8eLEn6+uuvNXXqVL355puSpIcfflh33HGHevfurZSUFL344ov+VvH//ve/9eyzzyo5OVlt27bVv/71LzVq1Ki2Lx11gc2mkqlT1WT0aJmGUS5wN8s6KpRMmVI3npGenCwlJ8ts0kSS4hv2ezxSaWn58D5UqB+4Mj+a4D9U0O8L+Y8e9Qb8Zfzh/6FD8fwEJEmmzRa0Mj9oNX/FUL9CG/6gML/CvqDgv+x8Sk2lfT8AAAAAAAAAANVkmJU9gLqBczgcVpeAOJk4caIuv/xy/yp0oDak5Oaq8aRJStq1y7/N06GDSqZMkXP4cAsrg0zTu6q/tlbzVxbuB67m920rLbX6E/AzK67mD9WGP3ACQDShfqi2/YGr+uvChBMAAAAAAAAkjF27dmnWrFm67bbblJmZaXU5AOo5u91e5RjC9koQtgOoMbdbyStXyigslNm2rbd1PAEjPJ4qV/EHhflVhfq+SQJVBP46dizk4w2sYKakBIf5EQT+IVvzVxbuB57PF/SnpLCqHwAAAAAAAAAQFmF7DRG2A6gNhw8f1vr169WjRw81bdrU6nLQ0Jmm5HSWX20fLtQPXPFfsUV/qH1Hj55o1V9xNb/vGJfL6k9AUtkjHXwhfGDL/spW8VcV6ge2/A+1mt/XASAtTUpKsvojAAAAAAAASDjciwVQmyIJ23lmOwDE2A8//KARI0Zo6dKl6tGjh9XloKEzDO+z2lNTZUqK+4w7lysokFeFVfkhA/+K4X7Z/pCr+QM7AFQM/n0fg2l63/fo0Xh/ApIkMzW1fKgfJvAP2Zq/qhb9ZaF+xdX8vn1K5sc/AAAAAACQmLgXCyDeuNsKAADiJzlZSk6W2aSJpDiH/aYZHPRXDPzDrNivLPAvNzZc4H/0qAyPx1+KUVoqlZbKOHw4np+A92Ow2UKH+wEr74NC/VDBfZgW/eUeBVBxIkBaGu37AQAAAAAAACQMwnYAANAwBLaOb97cmlX9Ydrwhwz8A8f4WvRXsa/cZILAwL+09MTH4HZLR47IOHIk3p+AJHkD+goBfGDgrwqr8oP2VRLqBwX/FQJ/2WyWXDMAAAAAAACAxETYDgAAEA/JyVJGhsyMDElxXtXv8QQF8eFa9IfcF2oVf+Bq/nCBv28SgXniav3vUVQUz09AkmQmJwevzK8Y/IcI/P1hfiX7fO37Q7b+T0+XUlJY1Q8AAAAAAAAkGMJ2AIixlJQUtW/fXikpKVaXAqChSkryhsGNGkmyoH2/0xl5qB8i3I8o+C/bH7TP6fSXYrhcUnGxjOLieH4C3o/B11kh1Mr8UKv5w+yrGOpXtq/cqv6kpLhfMwAAAAAA8ca9WADxZpimGfcuqvWFw+GwugQAAADUhNtdZagfcp+vrX+oAL+ylf4Vg/86wkxN9Qf3VQb+Aa8h94U6R7huAenp3q4OrOoHAAAAAABAPWO326scw8p2AAAAJC6bTWrSRGaTJpIsWNVfWuoN4X3hfYQr9asM/H2t+8MF/kePyvB4/KUYpaVSaamMw4fj+Ql4P4akpOqF+mHC/SqD/8DtaWkE/QAAAAAAAIgZVrZXgpXtAGrDt99+q2uuuUZvvfWWunbtanU5AICGwuWKrjV/hVb/IVv+h1nFX/HVOH7c6qv3M31t9iMM9aNZzW82anSijX/FMY0aeSd7AAAAAADihnuxAGoTK9sBoA5wOp3avXu3nAHPDQYAIOaSk6WMDJkZGZLivKrf4/GvvI+0RX+5fRXD/cDJAlUF/kePygiYT+wP/w8diucnIEkyk5PLrbI3Q6y8jyjUr6x9f6NGIVf+KzWVVf0AAAAAGhzuxQKIN8J2AAAAALUrKckbAjdqJMmC9v2+Vf3hVvOHC/VDtfwP1b4/IPj3vY9/W8ANHcPlkoqLZRQXx/MT8H4MhhEczAeG+wGr8oMCf9/3IVr0V7avXPt+VvUDAAAAAIAGgLAdiNC2bds0duxYHTx4UM2bN9eMGTN0xhlnhBz72muv6dlnn5XH49GAAQP05JNPKjk5WcuWLdOf/vQn/7j9+/erTZs2WrZsWZyuAgAAIMEZhpSSIqWkyGzaVFKcw363OyiID1p9H6pFf+C+iqF+ZfsqBv6+j8E0vZMKjh6N59X7mSkp/lC/ysA/RIAfdl+IVf4VJwsoOZlV/QAAAAAAIC4I24EIjR8/XjfddJNuuOEGzZ8/X/fcc48WL14cNG7Hjh2aOnWqli1bptatW2vUqFGaM2eORo8erQsvvFDLly/3j73uuuuUk5MTz8tAvLndarFuna6T1GLdOumss1jpBQBAIrPZpMaNZTZuLMmCVf2lpcGr+UOF+hX2h9pWMfD3t/EPF/i7XP5SDKdTcjqtWdWflBS67X5AKO8P/isJ/H0t+suF+b4xFScRBLwS9AMAAAAA0HAYpmnG9f5PfeJwOKwuATWwdu1aPfLIIzp8+LA8Ho/Gjx+vESNGSJIWL16sv/3tbyotLZVhGJo2bZp69+4d9lz79u1Tnz59tHXrViUnJ8s0TZ155plavHixTj755HJjp0+frp07d+qJJ56QJP3nP//R9OnTlZubW27c7t271bt3b61bt06tW7eu5atHXZCSm6vGkyYpadcu/zZPZqZKpk6Vc/hwCysDAACIAV/7/hChfiSBf8jV/OGC/4rnP37c6qv3M0O12Q8R+FdcsR9NqB9qhb9/VT8AAADQgB0+fFjr169Xjx491LSs2xkAVJfdbq9yDP9PHAmpqKhI48eP1xtvvKF27drpwIEDGjhwoM477zwdPnxY99xzjxYuXKjOnTvL6XTqaBXtNQsKCtSuXTsll928MgxDWVlZys/PDwrbCwoKlJ2d7f8+Oztb+fn5Qed84403dNFFFxG0J6iU3Fw1GT3au8IsgLF7t5qMHq0js2cTuAMAgMSSnCxlZMjMyJAU51X9Ho9UWuoN3Y8ejSjUL7fPd0yo1fyVrfQ/dsx7bMDPfP7w/9CheH4CkiTTZgsd6lcW+Fdowx9yNX+YcD9wkoBSU1nVDwAAAMs1bdqUbrIA4oqwHQlp1apV2r59u6699lr/NtM0tXXrVm3evFmDBw9W586dJUkpKSlKSUmp8pxGhRtHkTaFCDdu3rx5mjJlSkTnQD3jdqvxpEmSaari7UbDNGUahhpPnKiiQYO8K5BoKw8AAFAzvtbx6elS8+bxb99fcVV/lKv4qwz1fa37K3YLOH5cRmmpvxTD7ZaOHJFx5Eg8P4ETH0WEoX4kgX+kq/n9q/r5mRoAAACSdu3apVmzZum2225TZmam1eUAaAAI25GQTNNUt27d9MEHHwTt27x5c9Tn69Chg3bt2iWXy+VvI19QUKCsrKyQY3fu3On/Pj8/P2jc559/rpKSEg0aNCjqWlD3Ja9cWa51fEWGacrYvVv2sg4IZlKSlJIipaTILHsN/DpoW2qqlJxcfnvZtnLHBW7zfZ2aKrNsm//r1FTvMYH7U1O9xwV+HaI2JSezggkAADRshnHiZ6SyNpVxDfvd7qAgPtyK/XKBv+/7UC36K9sXGPhX6BDmnzBQVBTPT0CSvD+f1iDUjyTw97X1r/gYAKWk8DMxAABAHbFv3z4988wzGjlyJGE7gLggbEdC6tu3r3744QctX75cAwYMkCRt3LhRXbp00aBBg/TUU09p69at5drIN2vWTHfeeaeGDh2qYcOGlTtf69at1b17d7355pu64YYbtGDBAmVnZwe1kJekESNG6LLLLtODDz6o1q1b65VXXtGVV15ZbszcuXN1ww03yMbqi4RkFBZGN97jkXw3M2NUUyyFnRRQ1QSCyiYNBEwKKLctikkBkdSjpCSrPz4AAICasdmkxo1lNm4sKc5Bv2lKTmflq/krtvWvsGI/5L7AVf4VV/MHnt/l8pdiOJ2S0ymjuDien4D3Y/B1VggM5gOD+4rbIlipX26yQIjAP/B9+JkWAAAAAKxD2I6E1KJFC82bN08PP/ywJk+eLKfTqaysLM2ZM0ennnqqpk+frjFjxsjpdMpms2natGk699xztW7dOo0ZMybkOadNm6Zx48bp6aefVtOmTTVz5kz/vnvuuUdDhgzRkCFD1LFjRz300EMaMmSIPB6Pfv7zn+vGG2/0jz18+LByc3O1fPnymH8OsIbZtm1E4w6//rrcffpIpaWSy+W9QVha6r1pWFrqvVkY+HXZDUS5XN52oYHbovza917+9/VtL9tWbmzgtoAbmj7+cbX9QcaBabMFdQ3wr/yPtJOAb391OwkEnreKTgL+bamptEoFAADWMwzvzyWpqTKbNYtv0C95f0YNDORDrNgPGfgHjvG16K8s8K8Y/PvG+j4Gj0cqKZFRUhLvT0CSvD97pqXJDBHE+wP7Ro2CgvvAyQBBob5ve8WV/xX2KZnbSgAAAAAaNsOM9MHTDZDD4bC6BMSRw+HQLbfcovfee8/qUlDfud1q3qOHjN27ZYT4T6xpGDIzM1W0bl39C0w9Hu9NTd+kgMomCFRnUkDgeSOdFBD4XhW2BZ4v8HmmicD0tawNXOXvmxRQYQJAqG3hugaE7SRQxaSAKjsJVJjIQKtVAABQr3k83p81K4b4Idrt+8P8cPsCAv+K4X7QPt/kAY/H6k9AUtnk1cBw3xfqVxb4hwj3w+6rrANAWho/UwIAgCDr16/XwIEDtXTpUvXo0cPqcgDUc3a7vcoxTEEGytjtdoJ21A6bTSVTp6rJ6NEyDaNc4G6W3QwqmTKl/gXtkrdFpW/1UsDmejFryzS9zzSNRyeBChMEqjVpoLTUO9b3dYUbqoZpes9ZWlo/uwpUsvI/kgkClU4aqDApIKpHHASeN9REgdRUWrUCAADvzwO+MLh5c2tW9Ydpwx8y1K84ISBwNX+YfeXC/cBtAZNYDbdbOnJExpEj8f4EJOlEqB+mfX/FAL+ywL9ii/5yYyp2DUhPr5//fw4AgAagZcuWuvHGG9WyZUurSwHQQLCyvRKsbK/fWrZsqby8PGVkZNTaOfft26c777xT27dvV2pqqqZNm6Z+/fqFHPvRRx/pT3/6k1wul7p166bnn3/eX8tPP/2kCRMmaO3atbLZbLrsssv08MMP11qdqBtScnPVeNIkJe3a5d/m6dBBJVOmyDl8uIWVoV5yu0+E9LU4KaDSTgKVdA2oqpNA4ESGUI8fqM9M36STSDsJVNI1IB6dBALfQzYbK8AAAEDNeDxBQXy4FfuRBP4VXytr369jx0J2D7OCmZwcFOqHbMUfZsV+yH0hQv1yx/iCfjpFAQBQp5BFAIkrkpXthO2VIGyv32LxD9xdd92lrKwsTZw4UWvXrtXo0aO1du1aJVd4Tl1xcbHOPfdc5ebm6mc/+5kmTJigjIwM/elPf5Ik/frXv1bfvn119913S5L27Nmjdu3a1VqdqEPcbrmXLdPBTZvUsls32S68kBUQaHhMs3wYX1kngYCvI+4eUGECQNC2wMkIFboGhO0kEFhbgv2o5JsAUK6TQIhJAUHbAgP9OHYSCJxswE1lAAAaONP0/mxXg1A/ksDfd46gfU6n1Z+ApLKOaZWF+oETACrZVzHUr2xf4PvQ6QkAUFe5PW4t+3GZNu3YpG6ndNOFnS6ULSn292LJIoDERRt5NHj/93//p9zcXO3fv18PPvigRo0aJUnq0aOHrrrqKn355Zfas2ePbrnlFo0bN67K882fP19ff/21JKlXr15q06aNvvjiC+Xk5JQb9/HHH6tnz5762c9+Jkm65ZZb9Ktf/Up/+tOf9MMPP2j9+vV69dVX/eP5xy2B2Wz6plUrDfzzn73PCSJoR0Pke758Skr9e/yAdOLxA7XZSSAw0I+0k0CEEwTKva/bHXQ5Rn1+/IDNFjRBoKpJA0GdBCKcNFBlJ4EwkwLKnTdwogD//QcAoOYMI+ixVnH9mdLlKr/aPtLW/BVa/Yddxe97PXo06H2MY8dOfAym6e0qcPRoPK/ez0xNDV7NH0GoH0ng7x/ra/lfsX1/cjITMAEAIeVuzdWk5ZO0q7isy+g3UmZGpqYOmKrhnWPfZZQsAmi4CNuR0NLS0vTxxx9ry5Yt+uUvf6lf/epX/plfe/fu1QcffKADBw5o4MCBOu+889S7d++w5zp48KA8Ho9atWrl35adna38/Pygsfn5+crOzvZ/f/LJJ2v37t3yeDzasmWLOnTooPHjx2vdunVq2bKl/vznP6t79+61eOUAgFpjs0mNGnnbegZsrheTBTyeyCYCBG6LZlJAYIeCSDsJBL5fqAkCgdsqMNxuqeymcn27xWr6woHAwD5w0kCIbZVOCoj0kQI16CQQOJGBm9oAAMj7b2JysswmTSTF+edB0/T+jBQY3ld89a3yDxXqhwn8y00WCLPCX0ePyvB4/KX4J28ePhzPT8D7MSQlnWi3X4NV/OUmAITZF9TWPy2Nn4kAoI7K3Zqr0R+OllnhX+fdxbs1+sPRmn3Z7JgH7mQRQMNF2I6Eds0110iSunTpIpvNpsLCQnXo0EGSdOONN0qSTjrpJA0dOlTLly+v9B84STIq/J+qyp7CUHGsj9Pp1FdffaXf//73euaZZ7RkyRJdf/31Wr9+fVALGAAAaiQpyXtTMC2t/k0U8D1+IJJOAoETBKrTSSBM14JKJwVUNomhtDTo8QOGaUq+G9wWfaQ14Q/sQ6z8DxvuRzERoLqTAsJ1EijXVYBWtwCARGAYJ1Z6N28e/5/nXK6woX7IwD9UuB9uX4XAv2JnAKO09MTH4PFIR47IOHIk3p+AJHkD+sAgPlS4H7AqP5LA39cZwD82VPv+9HQ6JQFAGG6PW5OWTwoK2iXJlClDhn6//Pe67NTLYtpSniwCaLj424SElpaW5v/aZrPJHaKdrk+4f5B8WrZsKUnav3+/f0ZZfn6+srKygsZmZWXp008/9X+fl5en9u3bKykpSdnZ2Wrfvr1+/vOfS5IuuugiOZ1O7dq1SyeffHLkFwcAQCILePyAJGtaxdaE2x3/TgIVJghE00mgXG0uV9Dl+PdZ8FHWlGmzRddJoJYmEIR6lEFlkwJCvYdsNlbQAQDqhuRkKSNDZtmzaOP6M5nHE759fyShfuAYX4v+UKv5Q7Tv19Gj5SZRGr79hw7F8xOQJO/PDQGr7M0QK+9DBf6RtugPNSHAdz6lpvIzSQNkmqZMmeFfw+zzH1+NY31haaXbqjiv93+Vv2fI6wuovzrXHPa81azb8muu6j2lah8b7rhI/9xUPLawpPBE6/hQf5ZlqqC4QCt3rVROVk7YcTVFFgE0XITtaLDmzZunfv36yeFw6MMPP9TLL78sSXr00UfVvn17jRkzJuiYkSNHatasWZo4caLWrl2rwsJC9evXL2jcRRddpAkTJui7777Tz372M7388su68sorJUk9e/ZU06ZNtWnTJnXr1s3/3JX27dvH8GphJcMwlJqaWuUPUQCABGKzeX+lp6tedhWoxqSAcsF9FZMCKu0kEMkkhXD7A1a++Rhut3fyg+rp4wdqcyJAiK4B5bYFThCoZieBcpMF+NkHAOqUmgRnVW6r5LyVvncl7+EPdAJDJJsps1HZL5kyzVSZSpFpNokuCIq0bo9Hptsps+znFe+r95dZ1k7fdJ7YZzpLZbqcZdud3nGuslen68Q+l/fnF9PllOl0ynS5JLdTZqlTptv7M5fpdkpuj0zD+zOkabhkqlimUVz2vcq/lkoqVeh91XxV2dcewxv2mzabzGSbPMneV9OW7H1Ntsm02eSx+b5OKhuf5N1mS/JOgAz42lP2aiYlebclJZVt837t3W54X8P8+ajyz3Y1/lz6/yzW8M90uD/b1ak3onNEeGxloWmozxZIJIVHCi17b7IIILERtqPBys7O1mWXXabCwkLdfvvtOvfccyVJmzZtUo8ePUIe8/DDD+uOO+5Q7969lZKSohdffNHfbmXKlClq3769br75ZjVt2lTPPvusfv3rX8vlcqlr166aOXOmJG/wOnPmTN177706duyY0tPT9eqrryqlbOUeEovb49ahloc0878zdajJIbk97pi2KwIAoMZ8z5dPTS13m61e3HIzzZBdBWrcSSCCCQJVTQTwTwYoe38j1LYKKx8M0/t8XpWW1ruJApL8gX21HykQbqJAiEkBtdFJIKirQB0X0Y3/Wr7xXpOgwH+cIlt9FclKpmiuOZK6q9xfjbpjes1RHhvquMr2R/v5Bh4X9bGV1BPpNUf65zLivz9RvGfYv1Nhjq3q72Bl+yP5+0toVkckSUor+5UQXGW/asBd9gsoY8iQYRjlX0NtK3v1Hxdmf1XHhtrnryPMsWHrDPOegeOjPTaqc1Sz3nKfQ6hjI/gsQ52vOseGOi6a31/f2O0/bdcr37xS5Z+3tk3aRvkntPaQRQCJzTAD/58QynE4HFaXgBjp0aOHXn/9dXXt2rXcdo/Ho4svvliLFy9WEs/3RA3lbs3VpOWTyrUxyszI1NQBUzW883ALKwMA1EURBRC1eOM98LhK37+K8yogQAqqI4KaKnvvqq6rOnX7z1mhdsuvWaZMj0fyuL2r2zwemW6XTJdLpsct0+2W6fGu0jfdAfvd7rJVd64T+z1l28qOM3xfB7yqwve+r2V6TnxvBow3T2yTxyzbV7bd9JRdR81XztXWajzv70sNz2UY/lf5vzcq7Av4WhW/ruT8kvec/j+PAV9X3O7/MxLwZxcA6qCwQU81wq/A44LOF8WxoYKZcOerboBVro5qhl+VXVeVx1YRQvmPj/ZYGTI8Hhluj5LcbhlujwyX92cNw+32bnN5vw58TfJ/7fKOcXq/NtxuJTld3rEuV9lYp+Q88bV/rNOlJI9HhuntTBTNq7f26I6p7NU0DBkpKVJyioyUVBmpAV+npEgp3ol8RmqaDP/XqQFfe9vwG6lp/q5BSkmVkZZWfl/ga1q6lJrmPU9SUtjfP+//aifQjfbPdKg/q5H+mQ58f6A2uD1u9ZjdQ7uLd4f8WdmQocyMTK0bvc6SRVBkEUD9ZrfbqxzDynYgQFJSkj7++GOry0ACyN2aq9Efjg76AW938W6N/nC0Zl82m8C9AagqOKssOJKqF5xVDJ9C1hFFiBQ2JIo2RIrgmsPWG2Xddeaaq/o9quaxoY4rd44ojw13XLhrru7vUZV/L6r6vCrbFuWxkVxzdf8ORnSOSj4fICaSyn4hSmaF1zi/bR3gDRq8t8mDXkOuQAq+aa9y3yeVv9nu+94wpIB9Uoib8lEGBZGskIrk2HiEdWHPFWpcpOFHNY8Ne63VPLbKIK+S88qIPCCseL5ojg17zdX9/Y00aKrBNcfiz3Rl562yJkIzxILLJR07JuP48fKvobYF7NPx4yFfw+47fizoXMbx4wGFmJLKevTrSNw/BjMtTWZamvfxVL7X9HQpLS3ka2X7yp0j4DXkvrR0b6cgoB6wJdk0dcBUjf5wtAwZ5f4/tu/ftykDptS5bqNkEUDiYGV7JVjZDqA6fLMpA1e0V5SRkqFRXUfJMIyIw6/K9ld1bGWBUMhjqxFg+c5Xm+FXqHHVqbcm1xp0XaH2EZwBqCeivXkuVa/VYnVu2PvGh60zygAr5PtHeGytBhtxCrAi/f2N9D1Dna+69frOp2qGX6GOq/XfX4/HvwrPu3LPdWIln291nW81njtwRd6JY5JcTv9qvROr9FwBY11l53B5jyv72r/N6X2cgeFyKan0xLmSSksll1uG0+k/R1JpqXd/aamS3NGv/FOEY6xg2mzlW/sHPC4gcJuSk0M+asAse1SA/+sIHy8Q1SMOAh9r4NufmlovHj8AAIiAx+N9jM+x4CA+XLhfbpvv+4rhvi/MDxX8+445etT7KKE6wExODgjfqx/qRxL4q1GjcmOVmioxkQdRCtVltENGB00ZMKVeLXp68sknNW/ePEnSVVddpcmTJ4cct2/fPt15553avn27UlNTNW3aNP8z3ceNG6dly5bppJNOkiRdeOGFevTRR+NzAUCCiWRlO2F7JQjbAVTHivwVGvHuCKvLQANQVUghBQcRobZFGrpU59iwdUYQ1lV2bKjjAsdHe2xtnKPc5xPmM6xp+BXqfNU5NtRx0f7+qorQrLLf36qODVtvbfz+VhIk1uSaI/l9iOY9a/Pvr++9ASQoj8e7+q+01Bv0l5ZKZaG9/2unU3I6JZdLRsVtVX3tO2+FbXK5yo8t2xb4dahtgeczSkut/vRqlWkY/uDdH+j7JgUETgYIs61ckB8wQSDspIHAiQCBEwgqmzQQOHmhQp2EGgBQB5hm8Kr+cIH/0aOhQ/3jx2WE2xc4SSBwNb9vn9Np9SfgZ1YI4sOF+tGs4vd1Bqgs8FdaGhPo6jG3x605n87R/X+8X08/9rRu/PmNdWpFu8vl8j93PZTPP/9cv/vd7/Txxx8rOTlZQ4YM0eTJk3XRRRcFjb3rrruUlZWliRMnau3atRo9erTWrl2r5ORkjRs3Tj179tSYMWNieTlAg0AbeQCwQOGRwojGXdrpUp3R8oyIAzep8laLlR0b6riK56tO+BV4XFB9NQxjI7keq645MLiqzrFB1xfFNVd8fwAA0MAlJXnD0tTUcr116sWsetOU3O7y4X0kkwYCvvZvq2pSQIUJAKG2BU0KCJygUGGbSktleDzlLscwTe85S0tVH39aMytZ+R+ua0BEnQRCTAqojU4CgZMGxHNOASQK38StlBSZTZtKivO/6W53UBAfbsV+ucA/1Gr+o0fLjw21LzDwP3q0/Efhe9+ionh+ApLk/fcmMMAPF/iX7VOFdv/+wN83JtSjACpOFijbp5QUJsDVgM2ULtwuXfeN99WWE5/3Xbt2rR555BEdPnxYHo9H48eP14gRI5SXl6dBgwbp9ttv17JlyzRs2DCNHTs27Hnee+89XX/99WrSpIkkadSoUXr33XdDhu3z58/X119/LUnq1auX2rRpoy+++EI5OXG6aAB+hO0AUMvaNmkb0bix54xVThY//AAAAKCBMgxviFq2uscXJtSLiQKSN5Dwhfvx6iRQyQSBsJMCQkxeMFyuoMsxXC7veSz4KGvK9E06ibSTQCUTBCKaNFDNSQFmiPPKZiNUAVB32GxS48YyGzeWFOd/k32T1iq25g8V+AcG+BUD/wr7yoX8FcP9wG0B/zb6J/UVF8fzE/B+DElJwavuA0P9UK39QwT+/jA/4LhyY0J1AEhLq9cT2FJyc9V40iT13LVLr0vS/ffL88QTKpk6Vc7hsWsjX1RUpPHjx+uNN95Qu3btdODAAQ0cOFDnnXeeJOngwYM69dRTNWHChCrPlZ+fr/PPP9///cknn6wFCxYEjTt48KA8Ho9atWrl35adna38/Hz/988//7xeffVVZWVlafLkyTr77LNrcpkAKkHYDgC1rH9mf2VmZGp38e6Qz+42ZCgzI1P9M/tbUB0AAACAWmGzeX+lp9fPrgKVTRSIdSeBSroGRDRpoMITEQ2PRzp2zPu1FZ9nDZnV7SQQGPjHsZNAYPcDJgoAqDWG4Q1709JkNmsW/39PXa7y7fZDrNgPua/ihICKq/krBv6BwX/ZRAHj+PETH4PHI5WUyCgpifcnIMn7b1K4IL6yFfthQ/3AFv2hVvMH7PNNwKyOlNxcNRk92vszTgBj9241GT1aR2bPjlngvmrVKm3fvl3XXnutf5tpmtq6dauys7OVnp6uq666KuLzBXa0rOwp0BU7XwaOnTx5stq1a6ekpCQtXLhQ1157rb766itlZGREXAeAyBG2A0AtsyXZNHXAVI3+cLQMGeUCd1+r8CkDptSp5wUBAAAAaEAMo/4+fkA68fiB2uokUPGxBWEmBQRtCzxX4ASBChMZym1zu4Mux6jPjx+w2YImCPhD+ggmBUQzEaA2OgmUmyjAM5kBBCrrtmOWte+O67+JHo/334HA8D7civ2yUD+SwL/ia9jAP+DROEZpqfffpUOH4vkJSCr7N6Viu/1Qq/kr7FNKilJffVUyzaB/Sw3TlGkYavz736vossti8t9+0zTVrVs3ffDBB0H78vLy1Lhx44gfCZmVlaW8vDz/9zt37lRWVlbQuJYtW0qS9u/f71/dnp+f7x+bmZnpHzts2DA9+uij2rp1q3r27BnxdQGIHGE7AMTA8M7DNfuy2Zq0fJJ2Fe/yb8/MyNSUAVM0vHPsWhcBAAAAQEKz2aRGjbyr4QI214vJAh5PZBMBwnUSCJwgEKZrQFWTBoI6CVQ1aSDwtQLD7ZbKnrNc3yYLmL5JJ2EmCEQzaaDcRIDAbVVMCij32IIw3QPKfR1QE10FgATiax2fni41bx7/9v0uV3Qt+sOE+pEE/v42/r5tpaX+Ugy3WzpyRMaRI7V6iYZpyigoUPLKlXLF4Hnmffv21Q8//KDly5drwIABkqSNGzeqS5cuIcevWbNGjz32mN5///2gfSNHjtSECRN06623Kjk5WXPnztXvf//7kOcZOXKkZs2apYkTJ2rt2rUqLCxUv379JEkFBQXq0KGDJOmrr77yt7IHEBuE7QAQI8M7D9dlp16mOZ/O0f1/vF9PP/a0bvz5jaxoBwAAAICGKinpRJvkgM31YqKAL5AJN1EggkkBEXcSCNO1IOJJAaFqq9ha2DQlX6Bk0UdaE9XpDmBlJ4FyXQXq8TOhgYRjGCf+zjdtKsmCVf3h2veHas0fYp9twwal/uc/Vb6VUVgYk0to0aKF5s2bp4cffliTJ0+W0+lUVlaW5syZE3L8zp07lZ6eHnJfTk6OLr/8cuWUTQq48sorNXjwYEnS119/ralTp+rNN9+UJD388MO644471Lt3b6WkpOjFF19Uclkr/rvuukt79+6VzWZTenq6XnnlFTVr1qy2Lx1AGcOs7KEPDZzD4bC6BAAJYP369Ro4cKCWLl2qHj16WF0OAAAAAAANj9sdm04ClU0KiGQiQCRdDlwuqz+9WmXabNF1Eqika0C1OwlEMCkg1CQF2Wx0FQDqmOQVK9R0xIgqxx1esCAmK9ujNXHiRF1++eX+VegA6ja73V7lGFa2AwAAAAAAAEhsNpv3V3p6/ewqYGUngRpMIAhsEe1juN3eyQ+qp48fqM1OAiEmCJTbVsWjBsqdK9QjBypOFmCiABKQq39/eTIzZezeHdTFRPL+vTUzM+Xq39+C6oL99a9/tboEALWMsB0AAAAAAAAA6irf8+VTU+vnRIGKXQXCTRSIZlJALUwE8E8GqPB4hHLbyiYF+Bim6a2vtLTeTRSQdGKVf6jHAfi2V9I1IOxEgRCTAmqjk0BQVwEgFJtNJVOnqsno0TINo1zgbpZNMCmZMoU/QwBihrAdAGKsWbNmuvTSS3kuDgAAAAAAaFgMwxuyJidLjRr5JwjUi4kCkvd50jXpJBCma0ClEwECz1thAkBVEwUC6zSczqDLMVwu73mOHrXgw6wZMykpuk4CvgkCISYFhJ0oUMWkgGg6CQS+h5KT6SoQY87hw3XsrruUPnOmd5KPj2Ho2Lhxcg4fbl1x1bBt2zaNHTtWBw8eVPPmzTVjxgydccYZIce+9tprevbZZ+XxeDRgwAA9+eST/me3S5Jpmrriiiv0zTffaOvWrfG6BKBB4ZntleCZ7QAAAAAAAACAesc0vWF8JJ0EqjMpoKpOAhFOEAg7aSDBYgvfBICoOwlUNUEgFp0EKtSppCSrP74qpeTmqsno0ZJplus6YUqSYejI7Nn1KnAfOXKkfvWrX+mGG27Q/PnzNXPmTC1evDho3I4dOzRkyBAtW7ZMrVu31qhRo3TxxRdr9OjR/jEvvfSSNm7cqEWLFhG2A9UQyTPbCdsrQdgOoDY4nU4VFRWpefPmSklJsbocAAAAAAAAoG7zPX6gYieByiYKVDURIHDiQaSdBALf1zcpwPd1YCeBwG0VHj9Q35k2W/lJAYEhfgSTAsyygL/c/mg7CVT2dVKSmo4YIaOwMOTjHXzPbC9aty5mreTXrl2rRx55RIcPH5bH49H48eM1YsQISdLixYv1t7/9TaWlpTIMQ9OmTVPv3r3Dnmvfvn3q06ePtm7dquTkZJmmqTPPPFOLFy/WySefXG7s9OnTtXPnTj3xxBOSpP/85z+aPn26cnNzJXlXyI8bN04zZ87UJZdcQtgOVEMkYTtt5AEgxr799lsNHDhQS5cuVY8ePawuBwAAAAAAAKjbbDbvr/T0co8dqBcrBz2e8mF8bXcSqGzSQIhJAb7zl9tfWuo9rkKdIR8/4HZLZY8eqI/N8A3TlFFQoOSVK+XKyan18xcVFWn8+PF644031K5dOx04cEADBw7Ueeedp8OHD+uee+7RwoUL1blzZzmdTh2t4jEOBQUFateunb8VvGEYysrKUn5+flDYXlBQoOzsbP/32dnZys/PlyR5PB7dd999euKJJ1gABsQYYTsAAAAAAAAAAEBtSEryrtJOTa1/EwVM09tVIB6dBCpMEIiok0CoSQMlJTKOH6/y0ozCwph8ZKtWrdL27dt17bXXBnyMprZu3arNmzdr8ODB6ty5syQpJSUlouDbMMpPa4i0QXXguBkzZqh///46++yzlZeXF9HxAKqHsB0AAAAAAAAAAKChMwxva/eyVdW+6LYuTxRIXrFCTctatlfGbNs2Ju9vmqa6deumDz74IGjf5s2boz5fhw4dtGvXLrlcLn8b+YKCAmVlZYUcu3PnTv/3+fn5/nGff/65Nm3apH/9619yuVz66aef1KNHD/33v/9VixYtoq4LQHhJVhcAAAAAAAAAAAAARMvVv788mZkyjdBN7k3DkKdDB7n694/J+/ft21c//PCDli9f7t+2ceNGlZaWatCgQVqyZIn/WelOp1OHDh2SJN15551auHBh0Plat26t7t27680335QkLViwQNnZ2UEt5CVpxIgR+uCDD7R3716ZpqlXXnlFV155pSTpjTfe0MaNG7V+/XotWrRILVq00Pr16wnagRggbAcAAAAAAAAAAED9Y7OpZOpUSQoK3H3fl0yZItlsMXn7Fi1aaN68eXryySf185//XP369dMjjzwij8ejU089VdOnT9eYMWOUk5OjwYMH6/vvv5ckrVu3TpmZmSHPOW3aNM2ePVt9+vTRs88+q+nTp/v33XPPPVq0aJEkqWPHjnrooYc0ZMgQ9erVS61atdKNN94Yk+sEEJ5hRvqwhwbI4XBYXQKABOB2u3XkyBE1adJEthj9UAcAAAAAAAAADVVKbq4aT5qkpF27/Ns8HTqoZMoUOYcPt7CyYA6HQ7fccovee+89q0sBUAW73V7lGML2ShC2AwAAAAAAAAAA1ANut5JXrpRRWCizbVtv63gWPwGogUjCdtrIA0CMbdu2TVdddZW2bdtmdSkAAAAAAAAAkJhsNm1p314j5s3TlvbtCdoBxAVhOwDEWHFxsZYuXari4mKrSwEAAAAAAACAhMW9WADxRtgOAAAAAAAAAAAAAECUCNsBAAAAAAAAAAAAAIgSYTsAAAAAAAAAAAAAAFEibAeAGOvQoYP+/ve/q0OHDlaXAgAAAAAAAAAJi3uxAOLNME3TtLqIusrhcFhdAgAAAAAAAAAAAAAgzux2e5VjWNkOADHmcDj05ptvMoEHAAAAAAAAAGKIe7EA4o2wHQBiLC8vT3fccYfy8vKsLgUAAAAAAAAAEhb3YgHEG2E7AAAAAAAAAAAAAABRImwHAAAAAAAAAAAAACBKhO0AAAAAAAAAAAAAAESJsB0AYqxx48bq3bu3GjdubHUpAAAAAAAAAJCwuBcLIN4M0zRNq4uoqxwOh9UlAAAAAAAAAAAAAADizG63VzmGle0AAAAAAAAAAAAAAESJsB0AYmz9+vVq2bKl1q9fb3UpAAAAAAAAAJCwuBcLIN4I2wEAAAAAAAAAAAAAiBJhOwAAAAAAAAAAAAAAUSJsBwAAAAAAAAAAAAAgSoTtAAAAAAAAAAAAAABEyTBN07S6iLrK4XBYXQKABHDs2DHt2rVLmZmZSk9Pt7ocAAAAAAAAAEhI3IsFUJvsdnuVYwjbK0HYDgAAAAAAAAAAAAANTyRhO23kASDGduzYod/+9rfasWOH1aUAAAAAAAAAQMLiXiyAeCNsB4AY++mnn/TWW2/pp59+sroUAAAAAAAAAEhY3IsFEG+E7QAAAAAAAAAAAAAARImwHQAAAAAAAAAAAACAKBG2AwAAAAAAAAAAAAAQJcM0TdPqIgAAAAAAAAAAAAAAqE9Y2Q4AAAAAAAAAAAAAQJQI2wEAAAAAAAAAAAAAiBJhOwAAAAAAAAAAAAAAUSJsBwAAAAAAAAAAAAAgSoTtAAAAAAAAAAAAAABEibAdAAAAAAAAAAAAAIAoJVtdAAAAAAAA9UGXLl2CtqWkpOikk05S7969dfvtt4ccU13//Oc/9a9//Us7duyQ0+lU37599dprr9Xa+WvTxRdfLI/Ho48//jho3/r163XttddKksaPH6/f/va3Yc+Tl5env/3tb1q9erWKiopkmqb++c9/6rzzzotZ7QAAAAAAVBdhOwAAAAAAUbjiiiv8Xx8+fFibNm3SwoUL9dFHH2nWrFnq169fjd9j8eLFevzxx9W8eXMNGjRIjRs31qmnnlrj88bCtm3btGPHDt10000h98+fP7/c1+HCdo/Ho3vuuUebN29Wz549dcoppygpKUmtWrXSxIkT9d577xG8AwAAAADqFMJ2AAAAAACi8Ne//rXc906nU5MnT9b8+fP1+OOPKzc3t8bv4Vsh/uyzz6p///41Pl8sffLJJ5KkgQMHBu1zOp368MMPZRiGWrVqpW3btmnTpk3q1q1b0NiCggJt3rxZvXv31ty5c2NeNwAAAAAANcUz2wEAAAAAqIGUlBTdfffdkqTvvvtOhw4dqvE59+zZI0nKzs6u8blibenSpWratKl69+4dtG/58uVyOBzq06ePv5V84Er3QPXpmgEAAAAAkCTDNE3T6iIAAAAAAKjrfM9j37JlS9C+kpISnXPOOZKklStXqmXLluX2HzlyRK+88oo++ugj5eXlyWazqWvXrho9erQGDx7sH/fcc89pxowZId8/sIW6w+HQSy+9pCVLlmj37t1q1KiRzj77bN18883KyckJWXuHDh3073//Wy+99JIWLlyo/Px8DRgwQM8//3xUNQY6ePCgcnJydOmll2ratGlB+++55x599NFH+stf/qI+ffrokksuUatWrbR8+XLZbLagz7aivn37atWqVSH3SdKSJUuUlZXl//6TTz7R3Llz9c0336ikpESZmZkaMmSIxowZoyZNmpQ79te//rVWrVqlJUuW6Ouvv9Zrr72m77//XjabTatXrw77ngAAAAAA+NBGHgAAAACAGtq0aZMkyW63BwXt+/fv10033aStW7eqbdu2Ov/883Xs2DGtW7dO48aN0+9+9zvdfvvtkqQzzzxTV1xxhT799FPt379fl1xyiRo3bixJatWqlSSpsLBQo0aN0s6dO5WZmanBgwfr4MGDWrlypVasWKFJkyZp9OjRQTV6PB6NGzdOq1evVp8+fdSlSxe1aNEi6hoDLV++XG63O2QL+cOHD2vZsmVKTU3VJZdcombNmql79+7asGGDPvvsMw0YMMA/9oorrtC+ffu0YsUKnXzyyTr33HMlSaeeeqo6dOigNWvWKC8vTzk5OWrdurX/ON9nI3nb+7/yyitKS0tT9+7dZbfbtWnTJr3wwgtavny55syZU268z0svvaS33npLvXr10sCBA7V79+7g32AAAAAAAEIgbAcAAAAAoJoOHz6sDRs26NFHH5Uk3XHHHUFjJk2apK1bt+q2227Tfffdp5SUFEnSzp07dcstt+iZZ57RgAEDdMYZZ2jw4MEaPHiwfv3rX2v//v2aMGFCuZXbkvTwww9r586dGjlypB5//HH/+VavXq3bbrtNf//739WvXz+dccYZ5Y7bvXu3UlNT9e9//1tt27atdo2BPvnkEyUnJ5cLzn0WLVqk48eP+4N2SRoxYoQ2bNigBQsWlDvmr3/9q7788kutWLFC5557rv7617+WO9fEiROVl5en22+/3b+6P9CHH36oV155RV27dtVzzz3n/8ycTqcee+wx/etf/9Jzzz2nhx56KOjY999/X6+++qr69u0btA8AAAAAgMrwzHYAAAAAAKLQpUsX/6/evXvrlltu0eHDh/XUU08FrSjfvHmzli9frnPOOUcPPPCAP8SWvM8mf+ihh+R2u/X2229H9N47d+7U0qVLlZGRoT/84Q/lzte7d29dd911crvdmjdvXsjjx48fHxS0V7fG0tJSrVixQr169VLz5s2D3sv3bPYRI0b4tw0dOlTJycn6+OOPdeTIkYiuORL/+Mc/JElPPfVUuckJKSkpmjx5slq3bq23335bHo8n6Nirr76aoB0AAAAAUC2E7QAAAAAAROGKK67w/xo6dKjOOeccORwOPfHEE0HPF//ss88kSRdddJEMwwg6l69d+saNGyN67zVr1kiSfvGLX/hXiwcaOXJkuXGBDMPQoEGDgrZXt8Yvv/xSR44cCXnO/Px8rVmzRi1atCi3gr1ly5bKycnR0aNH9Z///CfsdUbjwIED+t///qfTTjtNp556atD+tLQ0nXXWWTp06JC2b98etD9U/QAAAAAARII28gAAAAAARKFii3NJ+vbbb3XjjTfq1ltv1Ycffqjs7GxJUkFBgSTpySef1JNPPhn2nA6HI6L33rt3rySpQ4cOIff7tvvGBTrppJOUmpoatL26NS5dulSSQj6vfcGCBTJNU5deemnQe44YMULLli3TggULdPnll4d9v0j56t+2bZu6dOlS6dhQn3P79u1rXAMAAAAAoGEibAcAAAAAoIa6du2qX/3qV3r55Zc1d+5cTZw4UZLkdrsleVu8+wL4UOx2e1TvF2oFeuD2UPvT0tJCHlPdGpcuXapOnTqpY8eOQWMXLFggSfriiy90/fXXl9tXWloqSVq5cqX27t2rNm3ahH3PSPhaw7du3Vo5OTmVjm3RokXQtnCfCwAAAAAAVSFsBwAAAACgFvieFf7jjz/6t7Vr106SdMkll+g3v/lNjd/DF0zn5+eH3O9b5d26deuIz1mdGv/3v/9p165duuWWW4L2bdiwwf8ZbN++PWTrdskbki9cuDDkOaLhq79169Yhuw4AAAAAABArPLMdAAAAAIBa4AvAGzVq5N92/vnnS5I+/vjjWnkP3/PTly1bpkOHDgXtnz9/frlxkahOjUuWLJHkfc57uBpuvfVWbdmyJeSvl19+WdKJFfBVSUlJkXRiFX6gdu3aqVOnTtqyZYt27twZ8TUAAAAAAFBThO0AAAAAANTQt99+q3/961+SpF/84hf+7T179lT//v315ZdfasqUKTpy5Ei54zwej1asWKHVq1dH9D7Z2dm68MILdeTIET3++ONyOp3+fV9//bXeeOMN2Ww23XDDDRHXXp0aly5dqhYtWuicc84pN9blcunDDz+UJA0bNizse/br108nnXSSNm/erO+++67KGn0r+gO7BgS688475Xa7dc8994Q8X15ent5+++0q3wcAAAAAgGjQRh4AAAAAgCj4nscuSU6nUwUFBVq/fr08Ho8GDhyokSNHlhv/5JNP6pZbbtGrr76q+fPn64wzzlDLli1VWFioH3/8UQcPHtSkSZPUu3fviN7/0Ucf1Q033KD3339fX331lXr27KmDBw9q1apVcrvdmjhxos4444yorimaGvfu3atvvvlGw4cPl81mK3ee5cuX6+DBg+rUqZO6du0a9v1sNpsuueQSzZs3TwsWLNADDzxQaX0DBw7UzJkz9de//lWfffaZ//nxDzzwgOx2u0aOHKnvvvtOs2bN0uWXX64zzzxTWVlZKi4u1q5du/TDDz/ojDPO0NVXXx3V5wIAAAAAQGUI2wEAAAAAiMJ7773n/zopKUnNmjVT7969NXLkSF155ZVKSirfRK5Vq1Z688039cYbb+jDDz/Uxo0b5XQ61bp1a3Xt2lWDBg3SkCFDIn7/tm3b6u2339ZLL72kjz/+WIsXL1ajRo3Uv39/3XzzzcrJyYn6mqKpcdmyZTJNUwMHDgw6j6+F/NChQ6t8z6FDh2revHnKzc3V+PHjKx171lln6YknntArr7yizz77TMeOHZPkXdHuC94ffPBB5eTkaO7cuVq3bp22bNmiZs2aqV27drr11lsjqgkAAAAAgGgYpmmaVhcBAAAAAADqhzvuuEMrVqzQF198oYyMDKvLAQAAAADAMqxsBwAAAAAAETv33HN14YUXErQDAAAAABo8VrYDAAAAAAAAAAAAABClpKqHAAAAAAAAAAAAAACAQITtAAAAAAAAAAAAAABEibAdAAAAAAAAAAAAAIAoEbYDAAAAAAAAAAAAABAlwnYAAAAAAAAAAAAAAKJE2A4AAAAAAAAAAAAAQJQI2wEAAAAAAAAAAAAAiBJhOwAAAAAAAAAAAAAAUSJsBwAAAAAAAAAAAAAgSoTtAAAAAAAAAAAAAABE6f8BvxZMBKDk/tkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = mnl.plot_change(change_df, figsize=(20, 8))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The idea of structural preference or non-proportional substitution patterns simply cannot be accounted for with the multinomial logit model. This is occasionally called the Red-Bus, Blue Bus [paradox](https://www.youtube.com/watch?v=eciarlAhX6k) because the model property implies that even in a transport market with a 50% between a car and bus. If we introduce another bus similar in all respects to the original, then the new market is split equally between the three goods yielding a 33% share for each. This seems wrong because a new bus should only cannibalise market share from the bus consumers. \n", "\n", "Let's see how this pattern plays out in our example. We can remove a product as follows and re-estimate our multinomial logit. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Market Product Intervention\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Sampling: [alphas_, betas, betas_fixed_, likelihood]\n", "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [alphas_, betas, betas_fixed_]\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1c31b711743c41a58b7e5d060607f0aa", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Sampling 4 chains for 2_000 tune and 1_000 draw iterations (8_000 + 4_000 draws total) took 145 seconds.\n",
      "Sampling: [likelihood]\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "648fb4e8c25d48ac9563258ceedbbb3f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "new_policy_df = df.copy()\n",
    "new_policy_df = new_policy_df[new_policy_df[\"depvar\"] != \"hp\"]\n",
    "\n",
    "new_utility_formulas = [\n",
    "    \"gc ~ ic_gc + oc_gc | income + rooms + agehed\",\n",
    "    \"gr ~ ic_gr + oc_gr | income + rooms + agehed\",\n",
    "    \"ec ~ ic_ec + oc_ec | income + rooms + agehed\",\n",
    "    \"er ~ ic_er + oc_er | income + rooms + agehed\",\n",
    "    #'hp ~ ic_hp + oc_hp | income + rooms + agehed'\n",
    "]\n",
    "\n",
    "idata_new_policy = mnl.apply_intervention(\n",
    "    new_choice_df=new_policy_df, new_utility_equations=new_utility_formulas\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here agains we see a basically proportional re-allocation where the market demand is re-allocated equally across the remaining goods. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
policy_sharenew_policy_sharerelative_change
product
gc0.6360650.6744600.060364
gr0.1435670.1517700.057142
ec0.0710260.0753430.060773
er0.0934050.0984270.053764
hp0.0559370.000000-1.000000
\n", "
" ], "text/plain": [ " policy_share new_policy_share relative_change\n", "product \n", "gc 0.636065 0.674460 0.060364\n", "gr 0.143567 0.151770 0.057142\n", "ec 0.071026 0.075343 0.060773\n", "er 0.093405 0.098427 0.053764\n", "hp 0.055937 0.000000 -1.000000" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "change_df = mnl.calculate_share_change(mnl.idata, mnl.intervention_idata)\n", "change_df" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAMrCAYAAADpwvJHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0/dJREFUeJzs3XmY1WX9P/7nGWYAdRAHRQU33MIdV1w/JmWF+1KWueLWx1zSytQWP1ZqpqlZkllpobmk5q65577hLrmFCigguDAiAwoMc35/+GO+IgOzOHPOMDwe1zXXDO/3fe7zOgf1Gl/Pc993oVgsFgMAAAAAAAAAtFhFuQsAAAAAAAAAgEWNsB0AAAAAAAAAWknYDgAAAAAAAACtJGwHAAAAAAAAgFYStgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdgAAAAAAAABoJWE7AAAAAAAAALSSsB3oMD//+c9TKBTm+aqsrMyyyy6b7bbbLsOHD09DQ0Pj+AEDBsw3/tNfxx9//ELn/vTXMsssM189H3/8cS688MIMGTIkyy23XKqqqrLccstlhx12yB/+8Id8/PHH8z2mqZp69uyZtdZaK0cddVQmTpw4z/ixY8cutK5CoZAbb7yxvd5iAAAAAIBGhx122Dy9yF/84hfzjRk2bNhC+5cbb7xxi8Z9+mvYsGFJkh122GGh4/bcc8/GOkaMGDHf/W7duqVPnz4ZMmRIrrrqqhK8YwCfj7AdKKk5c+ZkypQpeeSRR3Lsscfm5JNPLsnzjh8/PoMHD87RRx+d+++/P++//37q6+vz/vvv54EHHsgxxxyTwYMHZ8KECc3ONXPmzLz++uv54x//mG233TbTp08vwSsAAAAAAFiwGTNm5Nprr53n2qWXXppisVimilqvoaEhtbW1uf/++7PffvvlD3/4Q7lLAlgoYTtQEgcffHCKxWI++uij/OQnP2m8PmLEiCbH33fffSkWi/N8nX/++Qud+9NfH3zwQeP9YrGYvffeO6NGjUqSDB48OM8++2xmzpyZZ599NltssUWSZNSoUdl7770X+Mvnfffdl/r6+jz66KPp1atXkk9Wst90000LfN2fratYLM7z6U0AALquk08+OQMHDsz1119f7lLoxC644IIMHDgwF1xwQblLAQAWcdddd12mTZuWJCkUCkmSMWPG5MEHH1zgY0499dT5+pfPPfdckk96t5++fvDBBy/wcU31ef/2t7/NN/eCdv384he/mGKxmNra2hxyyCGN13/3u9+18l0AKC1hO1BSPXv2zAEHHND45xkzZnT4c95888158sknkyTdu3fPDTfckI033jjdu3fPxhtvnOuvvz5VVVVJkpEjR+aWW25Z4FzdunXL1ltvnR133LHx2rhx4zr2BQAA0OhLX/pSBg4cOM/XRhttlB133DE//vGPM3r06HKX2GmMHz8+F1xwQZvD/uuvv36+93qdddbJFltskW9961u55JJLMnPmzHauGgCAtvp04H3kkUc2eb2zW2aZZeY5TlTvFejshO1ASc2cOXOes3b22WefDn/O22+/vfHnnXbaKf3795/n/sorr5yhQ4c2/vmOO+5ods5Pr35ffvnl26FKAABaY8CAAdl0002z6aabZtVVV82kSZNy/fXXZ++9986///3vcpfXKUyYMCHDhw/PDTfc8Lnm6d69e+N7PWjQoPTs2TPPPfdczj777Hz7299OXV1dO1UMAEBbvfnmm7n//vuTJP37989ZZ52VJZZYIknyz3/+c5E6ClPvFViUCNuBkrj00ktTKBTSs2fPnHbaaUmSTTfdNL///e+bHD9kyJAUCoV5vub+sriguT/9NWzYsMb7b775ZuPPa6yxRpNzrLnmmo0/L+zTknPmzMnjjz+ee+65J0nSq1ev7LHHHgsc/9m65m7fBADA5/O///u/ueqqq3LVVVfl1ltvzf33359tttkms2bNyo9//ONFqpnY2fXt27fxvb766qvz0EMP5eKLL86SSy6ZF198MX/5y1/KXSIAwGLv0ksvTUNDQ5JPFjj16tUrO++8c5Kkrq4u//znP5t83C9+8Yv5+pc///nP26WmQw45ZL65m1tl/8EHH8xznOiBBx7YLrUAdBRhO1A2zzzzTHbffffMmTOnQ59nQWewt3bMkCFDUllZma233jp1dXVZf/31c+edd2a55ZZrjzIBAPgclltuuZx99tnp3r17Pvjggzz66KPlLqlL+5//+Z/GMzvvuuuuMlcDAMBll13W+PO3vvWteb4nnX8r+QceeCCFQiE1NTUZMWJEunfvnuOOOy6//OUvy10awEIJ24GSOPjgg1MsFjN79uyMHDkyffv2TZLcf//9ufXWW+cbf99996VYLM7ztcMOOyx07k9/ffqXx9VWW63x5zfeeKPJOT59/dPjF2b69OmZPXv2Qsd8tq6WhPoAALRN3759M2DAgCTJ2LFjk3xybvnAgQPzpS99KUlyzTXX5Otf/3o22WSTDBw4cJ7HP/PMMznmmGOyzTbbZIMNNsj222+fE088Ma+//voCn3PGjBk599xz86UvfSkbbrhhvvSlL+XXv/71QlfWH3jggRk4cGCeeOKJJu+ffPLJGThw4ALPWn/hhRdywgknZIcddsgGG2yQbbbZJvvuu2/+8pe/ZNq0aY3PcdBBByVJRo4cOc+563Pfi89rww03TPLJdvVN+eCDD/Lb3/42u+66azbeeONssskm+eY3v5lrrrmmcdXVp336dU+YMCEnnHBCttlmm2yyySb51re+lUceeaRx7Kuvvppjjz02W2+9dQYNGpT9998/zz333AJrra2tzdlnn52vfe1r2WijjbLFFlvkwAMPzM033zzf7+hnnXVWBg4cuNDG7n//+98MHDgwW2+9derr6xuvP/LII/nlL3+Z3XffPYMHD86GG26YHXfcMaeeemomTpy4wPkAAD6Phx56KK+99lqSpKampvHYn5VWWimVlZVJPgmz5/6O/GmnnnrqfP3L9lrZ/re//W2+uT+9I+nCNDQ05MMPP9RPBTo9YTtQUpWVldliiy2y/fbbN1575ZVXOvQ5d9ppp8af77jjjrz99tvz3J8wYULuvPPOxj9/+vz2T7vvvvsybdq0nH766Uk+aeDuvvvuC2wuAgBQegtrxp166qk55ZRT8v7772eNNdbI0ksv3XjvyiuvzH777Ze77747STJw4MB89NFHuemmm7LXXns1eaTRjBkzcvDBB+fPf/5zJk6cmAEDBmSJJZbIiBEjcuCBB2bWrFnt/vr+8pe/5Jvf/GZuueWWTJs2LV/4whey1FJL5T//+U/OOeecvPTSS0mSL3zhC/nCF76QJKmurm48c33TTTfNBhts0C61fPzxx0nSeBbop40ePTq77757LrrooowdOzYrrbRSlltuubzwwgs55ZRTcvzxxy/w72r8+PH5+te/nnvvvTcrrrhievTokeeeey7f+c538thjj+Wpp57Kvvvum8cffzz9+vVLVVVVnnrqqQwbNiyjR4+eb75x48Zlr732yiWXXJIJEyZkrbXWSu/evTNy5Mj86Ec/ysknnzxPLbvuumuST/7fYUG7cM39wPDQoUMbG9hJcsQRR+TKK6/Me++9l/79+2fAgAF5//33849//CN77bVXYxMcAKA9fXrhUW1tbTbddNNssskm2XbbbRs/GFgsFnPppZeWqcLmffGLX8ycOXMyatSoDBw4MPX19fnb3/6WH//4x+UuDWChhO1ASc2ZMydPPvlkHnzwwcZr/fr169Dn3G233bL55psnSWbOnJmvf/3ref755zN79uw8//zz+frXv97YCN1iiy2y2267LXCu6urq/PSnP208p33q1Kk58cQTO7R+AABa5t133824ceOSzL9b0aRJk3LzzTfnwgsvzP3335/rrrsuDz30UJLk5ZdfzhlnnJFisZgf/ehHefjhh3PdddflkUceyX777ZeZM2fmhBNOyDvvvDPPnL/73e/ywgsvZKWVVsott9ySW265JbfddltuvPHGvPfee+2+vfo999yTc845JxUVFTn55JPz+OOP5/rrr8/dd9+dJ598MqeddlrjEUennHJKfvaznyVJ1ltvvcYz16+66qr8/ve/b5d65v5Ov84668xzfcaMGTnqqKMyefLkHHjggXn88cdz22235e67786tt96atddeO3feeWeuvPLKJuf985//nG222SYPPfRQrr/++jz66KPZb7/9Ul9fn1//+tc58cQTG1e6z70/ZMiQfPTRR/nDH/4wz1zFYjE/+MEP8vbbb2fw4MG5//77c/311+eee+7JX/7ylyy55JK58cYbc9VVVzU+Zv31188aa6yR999/P4899liTNd52221J/l8wP9epp56aBx54II8++mhuvPHG3HLLLXnsscfy/e9/Px988EF+8YtftO5NBgBoxowZM3Lttde2aOyll17aqVeKV1RUZIMNNsiVV16ZiopP4qvzzz8/L7/8cpkrA1gwYTtQEpdeemkKhUIqKyszePDgvPvuu0mSNdZYI3vvvfd844cMGZJCoTDP14K2kW9ORUVFbrjhhsZtLh977LFsvPHG6d69ezbeeOPG7Ts33HDDXH/99SkUCs3O+Zvf/CZVVVVJkquuuiojR45sctxnX0OhUGi3bZgAAPh/3n///Zx44omZNWtWevfunW222Wae+3PmzMn3vve9fPnLX2681rNnzyTJJZdckvr6+nz5y1/O4Ycf3tjY6969e/7v//4va6+9dqZNmzZPIFtXV5err746yScB69prr914b5111skpp5zS7JFDrfXb3/42SXL00UfnkEMOafx9NPlkdfk3v/nNrLnmmu36nJ81Z86cvPXWW/ntb3+bm266KRUVFTn88MPnGXPdddflzTffzFe+8pX87Gc/S3V1deO9tdZaK+ecc04KhUL+9re/NfkcyyyzTM4444zGx1VUVOQHP/hBevTokVdeeSW9e/fOSSedlO7duyf55O9p7gdg536AYq7HHnss//nPf9K9e/ecd955jR9GSJLtt98+Rx99dJLk4osvnqfxvMsuuyT5f6H6pz333HMZP358VlpppWy66abz3PvWt76VFVZYYZ5rPXv2zJFHHpnNNtssI0eOzOTJk5t83QAAbXHdddc1HiW0ySabzLdte319fVZaaaUkyZgxY+ZZBNXRDjnkkPl6o3OPfVqYTTfdtPFIpDlz5uRHP/pRB1cK0HbCdqDkllhiiayzzjr5/ve/n8cee2ye5ltHWXnllTNy5MgMHz48X/ziF9OnT59UVlamT58+2X777XPBBRdk5MiRWXnllVs039prr52jjjoqySerZX74wx92ZPkAAHzGn/70p3z729/Ot7/97ey666754he/mEcffTRVVVU57bTTmvwdc+7uRJ819yzwAw88cL57hUKh8fqnzwx/+umn89FHH2WllVaa54ikub785S/PF7p+HuPGjctrr72WqqqqHHzwwe02b0tMmDCh8bz39dZbLzvuuGMuuuii9OvXL+eee27+53/+Z57xc1f077PPPk3Ot84662SllVbKW2+9lUmTJs13f9ddd51va/pevXo1/q6+9957z/cB2TXWWCM9e/ZMXV1damtrG68//PDDST7Z7r1v377zPde+++6b7t27Z8KECXnjjTcar8/d7eruu++e7ziAuVvI77zzzk1+UHfUqFE555xzcuSRR+aAAw5o/Od07hmpHX2MFgCwePn01vCHHnrofPe7des2z++Pn95yvjM744wzsuSSSyb55AOQ99xzT5krAmhaZfNDANrm5z//eatWcc9tPnXE3MknK0qOPvroxtUrn7em888/P+eff/481wYMGNCpt2ICAOgqxo4d2/i7WlVVVfr27ZvNN988hx56aNZdd935xtfU1KRPnz7zXf/www8zZcqUJFngqvC11lqr8TnnGjNmTJJk9dVXbzJwraioyIABA9ptFfPrr7/eWEspPqz6ad27d288533mzJkZO3Zspk+fnpqammy88cbzjf/vf/+b5JNt9i+66KIm55wbiE+ePDkrrrjiPPdWWWWVJh/Tp0+fvP7661l11VUXeH/ixImZMWNGampqkvy/v7O5f4efVV1dnX79+mXcuHEZO3Zs4z8Dq622WjbccMOMGjUqDzzwQL7yla8kSRoaGnLHHXckmX8L+WKxmF/+8pcL3B5/rqlTpy70PgBAa7QkhD7jjDNyxhlnzHOtLaH7iBEjmn3c/fff3+L5hg0blmHDhjV5r3///pk+fXrLiwMoE2E7AAAAi5wzzzyzyeOIFmTuqpjPmjFjRuPPyy67bJNj5m49/ulm39zHNRXgf/Zx7aGuri7JJyu8S61v377zbKE/ffr0/PrXv84111yT73znO7nuuuvSo0eP+Wp98cUXm537448/nu/aZ1e1zzX3Qw1zt/9f0P1Pf/i1JX9Pyy67bMaNGzdfM3fXXXfNqFGjcuuttzaG7U888UTefffdrLXWWvOdVX/TTTflyiuvzJJLLpkf/ehH2XbbbbPCCis01nvCCSfklltuSX19/QJrAQAAYNEibAcAAGCx9ekQ/v3338/yyy8/35j33nsvSbLUUkvN97i5q+Kb8v777y/0uRe0I9KnPwAw19znnnseZzkttdRS+fnPf54XX3wxL774Yi655JLGI5aST96bDz/8MHfddVdWW221Mlbaur+nT//9Jp9sE3/WWWfl/vvvT11dXaqrqxu3kJ97pvun3XLLLUmSk046Kfvuu+9895vaMh8AAIBFmzPbAQAAWGwtvfTSjaue527V/lmvvfZakk+ODJpr9dVXT/LJdvJNheYNDQ2NW81/VnMB8JtvvjnftbXXXruxlrkrx5vT1Pb27aVbt275/ve/nyT561//Os+HAOZuxT569OgOe/6Wmvt3Nvfv8LPq6ury9ttvzzN2ruWXXz6DBw/Oxx9/nHvuuSezZs3K3XffnWT+LeSTZPz48UmSTTbZZL57s2fPXuA/XwAAACy6hO0AAAAs1rbbbrskyd///vf57hWLxVx++eXzjEuSzTbbLEsssUQmTJiQhx56aL7H/fvf/17gee1zzyQfNWrUfPdGjRqVV155Zb7rq666ar7whS9k9uzZTdbZlLnblze1VXt7+J//+Z+st956mTZtWuN7lCRf/epXkySXXXbZAlfvl8r//M//JEnuuOOOvPvuu/Pdv/rqqzNr1qystNJKWWONNea7PzdUv+222/Lggw9m6tSp2WijjZo8N37u+93UjgbXX3/9QlfXAwAAsGgStgMAALBYO/TQQ1NZWZl77703f/3rX9PQ0JAkmTVrVs4444z897//Ta9evfLtb3+78THV1dXZZ599kiS/+MUv5lm1/Morr+T0009PVVVVk883NwC+9tpr88ILLzReHzt2bE4++eRUVjZ94ttxxx2XJBk+fHguu+yyzJ49u/HeRx99lGuvvXaeOlZeeeUkn6zq7qig9/DDD0+SXHrppfnoo4+SJN/61reyyiqr5IknnsgJJ5yQd955Z57HTJ8+Pf/6179y5plndkhNn7bVVltlww03zKxZs/KDH/xgniD84YcfzvDhw5MkRxxxRJM7AXzta19L9+7d8+ijj+aKK65I0vSq9uSTD2Akyfnnnz/P+/3ggw/m7LPPnudcewAAALoGZ7YDAACwWFt33XXz05/+NL/85S9z1lln5ZJLLkm/fv0ybty4fPjhh+nevXvOOeec9O3bd57HHX/88Xn66afz4osvZpdddmnc6n306NFZb731summm+a2226b7/m23377bLPNNnn00UfzrW99K6uttlqqqqry2muvZbPNNss666zTeDb4p+2444754Q9/mPPOOy9nnHFGfv/732e11VZLXV1dJkyYkNmzZ+eyyy5r3Ma9T58+2WqrrfL4449nxx13zFprrZUePXpkueWWy29/+9t2ee+GDh2a8847L+PHj8/VV1+dYcOGZamllsqf/vSnfOc738mtt96af/3rX1l99dVTXV2dqVOn5q233sqcOXMyaNCgdqlhYQqFQs4999wcdNBBGTlyZHbYYYesvfbaqaury7hx45Ike+yxR5NnrCefHDOw/fbb55577smjjz6aioqK7LTTTk2OPfzww3Pbbbfl+eefz5AhQ7L66qvnww8/zIQJE7Lllltm+eWXbzzXHQAAgK7BynYAAAAWe/vtt1+uuOKK7LjjjmloaMgrr7ySnj17Zvfdd88NN9yQHXbYYb7HLLXUUvn73/+eI444Iv3798+YMWMyffr0DBs2LH//+9/TvXv3Jp+rUChk+PDhOeSQQ7L88stn/PjxmTFjRr7zne/kr3/96wJXxCfJd77znfzjH//ITjvtlJ49e+bVV19NXV1dNthgg5x44olZf/315xl/7rnnZu+99051dXVefPHFjBw5Ms8///zneq8+rVu3bjn00EOTJH/7298ya9asJJ+c237TTTflhz/8YTbccMNMnjw5L7/8cmbPnp0tttgiJ510Us4777x2q2NhVltttdxwww059NBD079//4wePTrvv/9+tthii5x99tk566yzFnq+/adXss8NzZvSv3///OMf/8hXv/rVVFVV5Y033kiPHj1y7LHH5uKLL17gjgUAAAAsugrFch+gBgAAAAAAAACLGCvbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdgAAAAAAAABoJWE7AAAAAAAAALSSsB0AAAAAAAAAWknYDgAAAAAAAACtJGwHAAAAAAAAgFaqLHcBnVltbW25SwC6gEmTJmXEiBEZNmxYVlxxxXKXAwAAAADQJenFAu2ppqam2TFWtgN0sKqqqvTv3z9VVVXlLgUAAAAAoMvSiwVKrVAsFovlLmJBXnjhhVxwwQV57rnnMnv27Ky11lo5+OCDs9tuu7Xo8QceeGBGjhy50DFnnXVW9txzzybvWdkOAAAAAAAAsPhpycr2TruN/BNPPJHDDjssVVVV2WWXXdKrV6/cddddOeGEEzJhwoQceeSRzc6x1157ZfDgwfNdr6+vz5/+9KdUVFRk66237ojyARq9//77ue2227LLLrtk2WWXLXc5AAAAAABdkl4sUGqdcmV7fX19dtppp0yaNClXX3111ltvvSRJXV1d9t1334wZMya33XZbBgwY0Kb577zzznzve9/LkCFDctFFFy1wnJXtQHt4/vnnM2TIkNx3330ZNGhQucsBAAAAAOiS9GKB9rTIntn++OOP580338yuu+7aGLQnSXV1dY466qjU19fn+uuvb/P81157bZLkG9/4xueuFQAAAAAAAIDFT6cM2+ees77ddtvNd2/bbbedZ0xrTZo0KY888kj69u2bHXbYoc01AgAAAAAAALD46pRh+9ixY5Mkq6222nz3evfunZqamowbN65Nc1933XVpaGjIXnvtlcrKTntkPQAAAAAAAACdWKdMm+vq6pIkvXr1avJ+dXV1Jk2a1Op5i8Vi4/bzLdlCvnfv3qmo6JSfRwAWIf37988Xv/jF9O/fv0XnewAAAAAA0Hp6sUCpdcqwvaM8/vjjGT9+fAYPHtzkqvnPmjp1agmqArq6vn375oYbbkiS1NbWlrkaAAAAAICuSS8WaE8t+dBOp1y2XV1dnSSZNm1ak/fr6uoWuOp9Ya699tokLVvVDtBeGhoaMnPmzDQ0NJS7FAAAAACALksvFii1Thm2DxgwIEmaPJd96tSpqa2tbdHK9M8+7u67787SSy+dr33ta+1RJkCLjBo1Kv369cuoUaPKXQoAAAAAQJelFwuUWqcM27fYYoskycMPPzzfvUceeSRJMnjw4FbNefPNN2fWrFnZbbfd0rNnz89fJAAAAAAAAACLrU4Ztm+99dZZZZVVcuutt+bll19uvF5XV5cLL7wwlZWV2WuvvRqvT5kyJa+//nqmTJmywDn/+c9/JrGFPAAAAAAAAACfX6cM2ysrK3P66aenWCxmv/32yymnnJKzzjore+yxR0aPHp1jjjkmq6++euP4K664IjvvvHOuuOKKJuf7z3/+k1deeSXrr79+1ltvvVK9DAAAAAAAAAC6qMpyF7AgW221Va688sr8/ve/z+23357Zs2dnrbXWynHHHZfdd9+9VXNZ1Q4AAAAAAABAeyoUi8ViuYvorGpra8tdAtAFzJo1K++++2769u2b7t27l7scAAAAAIAuSS8WaE81NTXNjhG2L4SwHQAAAAAAAGDx05KwvVOe2Q7QlYwdOzbDhg3L2LFjy10KAAAAAECXpRcLlJqwHaCDTZ06NTfffHOmTp1a7lIAAAAAALosvVig1ITtAAAAAAAAANBKwnYAAAAAAAAAaCVhOwAAAAAAAAC0krAdoIOtuOKKOeWUU7LiiiuWuxQAAAAAgC5LLxYotUKxWCyWu4jOqra2ttwlAAAAAAAAAFBiNTU1zY6xsh2gg02dOjW33357pk6dWu5SAAAAAAC6LL1YoNSE7QAdbOzYsdl///0zduzYcpcCAAAAANBl6cUCpSZsBwAAAAAAAIBWErYDAAAAAACwSJvTMCfPffBcskHy3AfPZU7DnHKXBCwGhO0AAAAAAAAssm557ZYMGjEo33/++8k3ku8///0MGjEot7x2S7lLA7o4YTtAB+vRo0cGDhyYHj16lLsUAAAAAIAu5ZbXbsmwfw3LxLqJ81x/u+7tDPvXsEUucH/33XfzjW98I5tvvnm22WabPP744wscO378+Hz729/O4MGDs+WWW+bPf/5zkuSVV17J9ttv3/g1aNCgrLHGGqV6CbBYKRSLxWK5i+isamtry10CAAAAAAAATZjTMCeDRgyaL2ifq5BC+lf3z3PDnku3im4lrq5tjjnmmKy88so5+eST88wzz2TYsGF55plnUllZOc+4YrGYL33pSznuuOOy5557plgs5p133skKK6ww35wnnnhiCoVCzjrrrFK9DOgSampqmh1T2ewIAAAAAAAAaEKxWMysObMyc87Meb5/POfjJq839X1m/cwWjfvsvFNnTs2k6ZMWXFuKmVA3IY9NfCzbrbxdh7z+m2++OWeccUZ69uyZ3XbbLb/61a/y5ptvprq6OiNHjszPf/7zTJs2LcViMT/5yU+y8847L3S+m266Kc8++2ySZNNNN83yyy+fxx9/PNttN2/9DzzwQHr27Jk999wzSVIoFJoM2mfOnJl//vOfuemmm9rnBQPzELYDdLBRo0Zll112yW233ZYNN9yw3OUAAAAAAIuwYrE4b1DdjuF1W0LxWQ2zyv2WNGvy9MkdMu+7776b73//+7nrrruy5ppr5o9//GPjvdra2hx00EG59NJLs+WWW6ahoSFTp05d6HxTpkxJQ0NDlltuucZrq6yySsaPHz/f2FdffTXLLbdcDjvssLz22mtZddVVc9ppp2XAgAHzjLv11luz2mqr6U1DBxG2A3SwhoaG1NXVpaGhodylAAAAAACt1FBsaDp4/vS1+jaG1/9/gN2a8bMbZpf7LVmoqoqq9OjWI927dZ/ne1PXunfrnh6V8/65Z7eeTY9r4vurU17NSQ+c1GxNKyw1/4rv9vDUU09lo402ypprrpkk2X///fPTn/40SfLkk09m4MCB2XLLLZMkFRUVLdqSulAozPPnBZ0GPXv27DzwwAO58847s+6662bEiBE5/PDDc88998wz7vLLL88BBxzQ6tcGtIywHQAAAAAA6DQ+G25/djV1s+F1c6F1/cJD8c9e6+zhdveK7gsNpXtWtjy8Xmgo3q1Hulc2HYrPvda9W/dUFCpK9tq3XWnb/O7p3+XturdTzPyh9Nwz27fuv3WHPH+xWJwvHP88+vTpkyR57733Gle3jx8/PiuvvPJ8Y1dZZZVsuOGGWXfddZMk3/zmN3PCCSdkzpw56dbtk/Pp33rrrTz55JMZMWJEu9UIzEvYDgAAAAAAi7E5DXNatcX4AsfWt25F94Lu1TfUl/stWajuFZ+sxm6X8LodQvH2DHsXNd0quuXM7c/MsH8NSyGFeQL3Qj55X361/a/SraJbhzz/5ptvnmOPPTZvvPFG1lhjjVx11VWN9wYPHpzjjjsuTzzxxDzbyNfU1OSXv/xl+vXrlyOOOGK+OffYY49cfPHFOfnkk/PMM89k8uTJ2WqrreYbt+OOO+YXv/hFJk6cmP79++fee+/Nuuuu2xi0J8kVV1yRXXbZJb179+6Q1w8I2wEAAAAAoKTqG+rbfD72As/obuH53E3NO6c4p9xvyULNF0q3YpvxlobirZl3cQ63O6Pd1totI3YekR8/+ONMrJvYeL1/df/8avtfZbe1duuw515++eVz7rnnZt99901NTU2GDh2aqqqqLLnkkqmoqMhll12WU045JXV1dSkUCvnJT36SnXbaKS+++GIGDRrU5JynnnpqjjzyyGy++eapqqrKRRddlMrKT+K8X/3qV+nXr18OOeSQLLXUUvnNb36TfffdN8ViMb17986f//znxnmKxWKuuuqqDB8+vMNeP5AUigs67IHU1taWuwSgC5gxY0ZGjx6dtddeO0suuWS5ywEAAABY7MwNtxcUXrd0RXdrQ/EFzdtQbCj3W7JAhRRKHl4vbN6qiirhNi0yp2FO7nvjvrww5oVstPpGGbLGkA5b0f5p06ZNS69evZJ8spL88ssvz+23377A8Q0NDfnqV7+au+66KxUVpdtyH2i9mpqaZscI2xdC2A4AAAAA0DrFYrHJldsdGV43N66zh9st3T68FCu6KysqhdvQCueee25uuumm1NfXp6amJuedd14GDhxY7rKAdiBs/5yE7UB7GD9+fH73u9/luOOOy8orr1zucgAAAIAuplgsZnbD7JKG183N++lzkzubikJFp9mOXLgN7UsvFmhPLQnbndkO0MHef//9XHLJJTnggAP8ggcAAABdwNxw++P6VoTSrThTu6Xzzg3FZ82Z1anD7W6Fbp87vO7RrccCf27tvJUV2uLQVenFAqXmtwoAAAAAoFMrFoslCa9bM29nVllR2erweqGrtJvY4rw1K7pLcWYyAEA5CNsBAAAAgHkUi8X5Auj5VlTXl25F96yGWeV+SxaqsqJyvpC5teH1wgLxlgblPSp7pHtFd+E2AECJCNsBAAAAoMwaig0LDKobr9W3Ibyee/Z2fctC8bk/z26YXe63ZKGqKqpat0K7svnweoGrtCubD7krChXlfksAACgDYTtAB1tuueXy3e9+N8stt1y5SwEAAOD/9+lwu6nV1M2G182F3fULD8U/e62zh9vdKzp+pXbj98qmx316xbhwG4Cm6MUCpVYoFovFchfRWdXW1pa7BAAAAIAuYU7DnFZtMd7ktfqWr+hubvV3fUN9ud+ShWrpyutWr9RuYyheKBTK/ZYAAEBJ1dTUNDvGynaADlZXV5eXXnop6623Xqqrq8tdDgAAsJiob6hv8/nYrQnAWzrvnOKccr8lC1Xq8Lq578JtAGg9vVig1ITtAB3s9ddfz9ChQ3Pfffdl0KBB5S4HAADoIPUN9QsNr1u6oru1ofiC5m0oNpT7LVmgQgolD68XNm9VRZVwGwC6AL1YoNSE7QAAAMAip1gszrdyu6PD6+bGdeZwu6JQ0Wm2I+/RrUcqKyqF2wAAwCJP2A4AAAA0q1gsZnbD7IWH0q04T/vjOa0IuxcwbzHFcr8tCzQ33O4M25H3rOyZygotIAAAgPbm/7QAAACgEyoWiy0Oo9srvF7YvLPmzOrU4Xa3QrfPHV635FpL5xVuAwAAdH3+zw+gg1VWVmbZZZdNZaX/5AIAdGafDbc7OrxuyfjOrLKistXh9QLHVrY87F7Q9W4V3cr9lgAAUGZ6sUCpFYrFYuf9WHqZ1dbWlrsEAACALqtYLM53LvZ8Z2TXl25F96yGWeV+SxaqqqJqvpB5oVuMV7Zwi/FuC16lvaAV3d0rugu3AQAA6NJqamqaHeOjPQAAAIuJhmJD0wH0p6/VtzK8/vTj61s2fu7Psxtml/stWajPhtvNrtCubH719QJXaVc2v6K7olBR7rcEAAAA+BRhO0AHe/nll3PAAQfk8ssvz7rrrlvucgCAEpobbi9oNXWz4XVzK7rrFx6Kf3b1d31DfbnfkoXqXrGQldoL2Ga8tSu1G79XNh2Kf3rFuHAbAAAWLXqxQKkJ2wE62KxZszJmzJjMmtW5tyUFgK5gTsOcVm0x3trwurmg/LPfO3u43a7hdTuE4oVCodxvCQAAsAjTiwVKTdgOAAC0WX1DfZvPx27qjO7Pe+72nOKccr8lC1Xq8Lq578JtAAAAgLYTtgMAwCKkvqG+1auv22tL8qZWijcUG8r9lixQIYWShtfNzVtVUSXcBgAAAOhChO0AALAAxWJxvpXbHRFet2bezhxuVxQqOs125D269UhlRaVwGwAAAIAOI2yHFnr33Xfz3e9+N2PHjk337t1z3nnnZauttmpy7Pjx4/OjH/0or7/+egqFQg477LB85zvfmWfMMccckyuvvDJvvvlmqqurS/ESKJPVV1891157bVZfffVylwLQ6RWLxcxumF3S8Lq5eYsplvttWaCKQkWn2I587ryVFf73AgAAgPLRiwVKTTcMWugXv/hFNt988/zzn//MM888k2HDhuWZZ55JZeW8/xoVi8UceOCBOe6447LnnnumWCzmnXfemWfMHXfcYZXVYmTppZfOl7/85XKXAdCkYrFY1u3IPzvvrDmzOnW43a3Qrc3hdY9uTY/9PKG4cBsAAAD+H71YoNR05+iybr755pxxxhnp2bNndtttt/zqV79qXEU+cuTI/PznP8+0adNSLBbzk5/8JDvvvPNC57vpppvy7LPPJkk23XTTLL/88nn88cez3XbbzTPugQceSM+ePbPnnnsmSQqFQlZYYYXG+1OmTMnZZ5+dG2+8MVdccUX7vmg6pUmTJmXEiBEZNmxYVlxxxXKXA5TZp8Ptcm9HPvd7Z1ZZUdnq8LrJVdqVC16l3ZoV3d0qupX7LQEAAAAWQC8WKDVhO13Su+++m+9///u56667suaaa+aPf/xj473a2tocdNBBufTSS7PlllumoaEhU6dOXeh8U6ZMSUNDQ5ZbbrnGa6usskrGjx8/39hXX301yy23XA477LC89tprWXXVVXPaaadlwIABSZIf/ehHOemkk7L00ku3z4ul05s8eXLOPvvs7LTTTn7BgzJoKDY0rpj+dAj98ZxPhdf1pVvRPathVrnfkoWqqqiaL2ReWEjdo/Lzb0m+oBXd3Su6C7cBAACAFtOLBUpN2E6X9NRTT2WjjTbKmmuumSTZf//989Of/jRJ8uSTT2bgwIHZcsstkyQVFRWpqalpds7PbvteLDa9xe3s2bPzwAMP5M4778y6666bESNG5PDDD88999yTG2+8Md27d8/Xvva1z/PyADq1hmLDAgPrxp/rWxFez/lMeF2/8FD8s9dmN8wu91uyUJ8Nt5tdqV3ZhvO0585b2fyq8IpCRbnfEgAAAACARYKwnS6pWCy265noffr0SZK89957javbx48fn5VXXnm+saussko23HDDrLvuukmSb37zmznhhBMyZ86cPPzww3nwwQczaNCgxvHbbLNN/vGPf2S99dZrt3qBxcvccHtBAfbnWandklD8s3PWN9SX+y1ZqO4VTa/UXtg24wsMr5sbX9l0KP7pFePCbQAAAACARZOwnS5p8803z7HHHps33ngja6yxRq666qrGe4MHD85xxx2XJ554Yp5t5GtqavLLX/4y/fr1yxFHHDHfnHvssUcuvvjinHzyyXnmmWcyefLkbLXVVvON23HHHfOLX/wiEydOTP/+/XPvvfdm3XXXTbdu3XLOOefknHPOaRzbp0+fPProo6muru6YN4Kym9MwJ8998FyyQfLcB89lg4YNbIncBcxpmNP86uuFhN2tPXu7uTGdPdxu1/C6HULx9vwwFgAAAAAAiy9hO13S8ssvn3PPPTf77rtvampqMnTo0FRVVWXJJZdMRUVFLrvsspxyyimpq6tLoVDIT37yk+y000558cUX51l1/mmnnnpqjjzyyGy++eapqqrKRRddlMrKT/4V+tWvfpV+/frlkEMOyVJLLZXf/OY32XfffVMsFtO7d+/8+c9/LuXLp5O45bVb8uMHf5yJdROTbyTff/77+c3rv8mZ25+Z3dbardzlLVLqG+o/1+rr1obXzc07pzin3G/JQpU6vF7YvFUVVcJtAAAAAEpimWWWyT777JNlllmm3KUAi4lCcUEHT5Pa2tpyl8DnMG3atPTq1StJcsUVV+Tyyy/P7bffvsDxDQ0N+epXv5q77rorFRW29OXzueW1WzLsX8NSzLz/iS3kk9BxxM4jOm3gXiwWmw23W7qiuy1bkjc1b0OxodxvywIVUihpeN3cOOE2AAAAAAB8fjU1Nc2OEbYvhLB90XbuuefmpptuSn19fWpqanLeeedl4MCB5S6LxcCchjkZNGLQJyvam1BIIf2r++e5Yc+lW0W3+cLtUoTXzX3vzOF2RaGi02xH3qNbj1RWVAq3AQAAAKAT+PjjjxuPeO3Zs2e5ywEWccL2z0nYDrTFw+Mfzu7X797suCUrl0xDsSEz58ycbwV8Z1JRqEjPbi0LpUuxoruywgkoAAAAAMD8nn/++QwZMiT33XffAo+MBWiploTtEguAdjZ5+uQWjZtRP6PJ690K3docXrf0XmvmFW4DAAAAAADMT4IC0M5WWGqFFo3741f+mG1W2ma+cLtbRbcOrhAAAAAAAIDPS9gO0M627r91+lf3z9t1bze5PfzcM9u/MfAbgnUAAAAAAIBFVEW5CwDoarpVdMuZ25+Z5JNg/dPm/vlX2/9K0A4AAAAAALAIKxSLxfmXXZIkqa2tLXcJwCLsltduyY8f/HEm1k1svLZS9Ur51fa/ym5r7VbGygAAAAAAAFiYmpqaZscI2xdC2A58XnMa5uSxiY9l8vTJWWGpFbJ1/62taAcAAAAAAOjkWhK220YeoAN1q+iWFT5aIX869k9Z4aMVBO0AAAAAAB1k9OjR+epXv5rRo0eXuxRgMSFsB+hgM2bMyFNPPZUZM2aUuxQAAAAAgC5LLxYoNWE7AAAAAAAAALSSsB0AAAAAAAAAWknYDgAAAAAAAACtJGwH6GCrrrpqLrrooqy66qrlLgUAAAAAoMvSiwVKrVAsFovlLqKzqq2tLXcJAAAAAAAAAJRYTU1Ns2OsbAfoYO+9914uvvjivPfee+UuBQAAAACgy9KLBUpN2A7QwSZMmJATTzwxEyZMKHcpAAAAAABdll4sUGrCdgAAAAAAAABoJWE7AAAAAAAAALSSsB0AAAAAAAAAWknYDtDBqqurM2TIkFRXV5e7FAAAAACALksvFii1QrFYLJa7iM6qtra23CUAAAAAAAAAUGI1NTXNjrGyHaCDzZkzJx9++GHmzJlT7lIAAAAAALosvVig1ITtAB3sP//5TwYMGJD//Oc/5S4FAAAAAKDL0osFSk3YDgAAAAAAAACtJGwHAAAAAAAAgFYStgMAAAAAAABAKwnbAQAAAAAAAKCVCsVisVjuIjqr2tracpcAdAGzZ8/O1KlT07t371RVVZW7HAAAAACALkkvFmhPNTU1zY4Rti+EsB0AAAAAAABg8dOSsN028gAdbMyYMdlvv/0yZsyYcpcCAAAAANBl6cUCpSZsB+hgH374Ye644458+OGH5S4FAAAAAKDL0osFSq2y3AUszAsvvJALLrggzz33XGbPnp211lorBx98cHbbbbdWzVNXV5e//vWvueuuu/LWW2+lqqoqq6yySr785S/nmGOO6aDqAQAAAAAAAOiqOm3Y/sQTT+Swww5LVVVVdtlll/Tq1St33XVXTjjhhEyYMCFHHnlki+aZOHFiDj744Lz11lvZZptt8sUvfjGzZs3Km2++mTvvvFPYDgAAAAAAAECrdcqwvb6+Pj/72c9SKBRyxRVXZL311kuSHH300dl3331zwQUXZOjQoRkwYMBC55kzZ06+973v5Z133smIESOy1VZbzfc8AAAAAAAAANBanfLM9scffzxvvvlmdt1118agPUmqq6tz1FFHpb6+Ptdff32z89x5550ZNWpUDj300PmC9iSprOyUnzUAuph+/frltNNOS79+/cpdCgAAAABAl6UXC5Rap0ybR44cmSTZbrvt5ru37bbbzjNmYf71r38lSYYOHZq33347999/f6ZNm5ZVVlkl22+/fZZaaql2rBqgacsvv3yOPvrocpcBAAAAANCl6cUCpdYpw/axY8cmSVZbbbX57vXu3Ts1NTUZN25cs/P85z//SZI8/fTTOfPMMzNr1qzGe3369Mn555+fLbfcsn2KBliADz74IPfff3922GGHLLPMMuUuBwAAAACgS9KLBUqtU4btdXV1SZJevXo1eb+6ujqTJk1qdp73338/SXL66afn0EMPzQEHHJDu3bvntttuy1lnnZWjjz46//rXv7L88ss3+fjevXunoqJT7rQPLELGjBmTQw89NE8//XRWX331cpcDAAAAANAl6cUCpdYpw/b2UiwWkyQ77LBDTjjhhMbrBx54YCZPnpy//OUv+ec//5mjjjqqycdPnTq1JHUCXduHH37Y+L22trbM1QAAAAAAdE16sUB7qqmpaXZMp1y2XV1dnSSZNm1ak/fr6uoWuOq9qXm+9KUvzXdvyJAhSf7fVvMAAAAAAAAA0FKdMmwfMGBAkjR5LvvUqVNTW1vb5HnunzV3i5Cll156vntzr82cOfNzVAoAAAAAAADA4qhThu1bbLFFkuThhx+e794jjzySJBk8eHCz82y11VZJktdee22+e3OvrbTSSm2uE6AlevbsmY022ig9e/YsdykAAAAAAF2WXixQaoXi3IPNO5H6+voMHTo0kydPzjXXXJN11103ySfbx++7774ZM2ZMbr311saV61OmTEltbW1qamrSp0+fxnneeuut7LzzzunVq1duuOGGrLDCCo3zHHDAAXn55ZczYsSIbL311k3W4TwPAAAAAAAAgMVPS85s75Rhe5I8/vjjOfzww1NVVZVdd9011dXVueuuuzJ+/Pgcf/zx+e53v9s49oILLsjw4cNzzDHH5Nhjj51nnr///e85/fTTs8wyy+QrX/lKunfvnvvvvz8TJkzIt771rfzyl79cYA3CdgAAAAAAAIDFT0vC9k65jXzyyRbwV155ZTbbbLPcfvvtufLKK7PMMsvkN7/5zTxBe3MOPPDA/PGPf8xaa62V2267Lf/85z+zzDLL5LTTTlto0A7QXl544YWsuOKKeeGFF8pdCgAAAABAl6UXC5Rap13Z3hlY2Q60h+effz5DhgzJfffdl0GDBpW7HAAAAACALkkvFmhPi/TKdgAAAAAAAADorITtAAAAAAAAANBKwnYAAAAAAAAAaCVnti+EM9uB9vDRRx9l7NixGTBgQJZYYolylwMAAAAA0CXpxQLtqSVntgvbF0LYDgAAAAAAALD4aUnYbht5gA721ltv5Xvf+17eeuutcpcCAAAAANBl6cUCpSZsB+hgU6ZMyeWXX54pU6aUuxQAAAAAgC5LLxYoNWE7AAAAAAAAALSSsB0AAAAAAAAAWknYDgAAAAAAAACtJGwH6GB9+/bN8ccfn759+5a7FAAAAACALksvFii1QrFYLJa7iM6qtra23CUAAAAAAAAAUGI1NTXNjrGyHaCDTZs2LQ8//HCmTZtW7lIAAAAAALosvVig1ITtAB3sjTfeyO6775433nij3KUAAAAAAHRZerFAqQnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdgAAAAAAAABoJWE7QAerqqpKv379UlVVVe5SAAAAAAC6LL1YoNQKxWKxWO4iOqva2tpylwAAAAAAAABAidXU1DQ7xsp2AAAAAAAAAGglYTtAB3vppZey/vrr56WXXip3KQAAAAAAXZZeLFBqwnaADjZ79uy8/fbbmT17drlLAQAAAADosvRigVITtgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AAAAAAAAA0EqFYrFYLHcRnVVtbW25SwC6gGnTpuX555/PoEGD0qtXr3KXAwAAAADQJenFAu2ppqam2THC9oUQtgMAAAAAAAAsfloStttGHqCDTZw4Mb/85S8zceLEcpcCAAAAANBl6cUCpSZsB+hg7777bs4///y8++675S4FAAAAAKDL0osFSk3YDgAAAAAAAACtJGwHAAAAAAAAgFYStgMAAAAAAABAKwnbATpYnz59csABB6RPnz7lLgUAAAAAoMvSiwVKrVAsFovlLqKzqq2tLXcJAAAAAAAAAJRYTU1Ns2OsbAfoYB999FFefvnlfPTRR+UuBQAAAACgy9KLBUpN2A7Qwf773/9m2223zX//+99ylwIAAAAA0GXpxQKlJmwHAAAAAAAAgFYStgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AHaxQKKR79+4pFArlLgUAAAAAoMvSiwVKrVAsFovlLqKzqq2tLXcJAAAAAAAAAJRYTU1Ns2OsbAcAAAAAAACAVhK2A3SwV199NTvssENeffXVcpcCAAAAANBl6cUCpSZsB+hgH3/8cV544YV8/PHH5S4FAAAAAKDL0osFSk3YDgAAAAAAAACtJGwHAAAAAAAAgFYStgMAAAAAAABAKwnbATrYaqutlr/+9a9ZbbXVyl0KAAAAAECXpRcLlFqhWCwWy11EZ1VbW1vuEgAAAAAAAAAosZqammbHWNkO0MHeeeed/OEPf8g777xT7lIAAAAAALosvVig1ITtAB3s7bffzimnnJK333673KUAAAAAAHRZerFAqQnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdgAAAAAAAABoJWE7QAdbeumlM3To0Cy99NLlLgUAAAAAoMvSiwVKrVAsFovlLqKzqq2tLXcJAAAAAAAAAJRYTU1Ns2OsbAfoYLNnz857772X2bNnl7sUAAAAAIAuSy8WKDVhO0AHe+mll/KFL3whL730UrlLAQAAAADosvRigVITtgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdgAAAAAAAABopUKxWCyWu4jOqra2ttwlAF3AnDlzMn369Cy11FLp1q1bucsBAAAAAOiS9GKB9lRTU9PsmMoS1AGwWOvWrVuWXnrpcpcBAAAAANCl6cUCpWYbeYAO9vrrr+frX/96Xn/99XKXAgAAAADQZenFAqUmbAfoYHV1dbnvvvtSV1dX7lIAAAAAALosvVig1ITtAAAAAAAAANBKwnYAAAAAAAAAaCVhOwAAAAAAAAC0krAdoIOttNJKOfvss7PSSiuVuxQAAAAAgC5LLxYotUKxWCyWu4jOqra2ttwlAAAAAAAAAFBiNTU1zY6xsh2gg9XW1uaaa67xAR4AAAAAgA6kFwuUmrAdoIO9+eabOfLII/Pmm2+WuxQAAAAAgC5LLxYoNWE7AAAAAAAAALSSsB0AAAAAAAAAWknYDgAAAAAAAACtJGwH6GBLLrlkNt988yy55JLlLgUAAAAAoMvSiwVKrVAsFovlLqKzqq2tLXcJAAAAAAAAAJRYTU1Ns2OsbAcAAAAAAACAVhK2A3Sw559/Pn369Mnzzz9f7lIAAAAAALosvVig1ITtAAAAAAAAANBKwnYAAAAAAAAAaCVhOwAAAAAAAAC0krAdAAAAAAAAAFqpUCwWi+UuorOqra0tdwlAF/Dxxx9n4sSJ6d+/f3r27FnucgAAAAAAuiS9WKA91dTUNDumU4ftL7zwQi644II899xzmT17dtZaa60cfPDB2W233Vr0+CeeeCIHHXTQAu9fffXV2XjjjRd4X9gOAAAAAAAAsPhpSdheWYI62uSJJ57IYYcdlqqqquyyyy7p1atX7rrrrpxwwgmZMGFCjjzyyBbPNXjw4AwePHi+6yuuuGJ7lgzQpHHjxuVXv/pVfvKTn2S11VYrdzkAAAAAAF2SXixQap0ybK+vr8/PfvazFAqFXHHFFVlvvfWSJEcffXT23XffXHDBBRk6dGgGDBjQovkGDx6cY489tgMrBliwDz74INdee22OOuoov+ABAAAAAHQQvVig1CrKXUBTHn/88bz55pvZddddG4P2JKmurs5RRx2V+vr6XH/99WWsEAAAAAAAAIDFWadc2T5y5MgkyXbbbTffvW233XaeMS0xduzYXHbZZfn444/Tv3//bLPNNunTp0/7FAsAAAAAAADAYqdThu1jx45Nkia3+Ojdu3dqamoybty4Fs9366235tZbb238c8+ePXPsscfm8MMP/9y1AgAAAAAAALD46ZRhe11dXZKkV69eTd6vrq7OpEmTmp2nT58+OfHEE7PDDjukf//++fDDD/PEE0/knHPOyW9+85tUV1dn3333XeDje/funYqKTrnTPrAIGThwYE499dQMHDgwNTU15S4HAAAAAKBL0osFSq1QLBaL5S7isw499NA88sgjueuuu5pc3b7jjjtm0qRJ+c9//tOm+f/73/9m7733Tu/evfPQQw8tMFCvra1t0/wAAAAAAAAALLpa8qGdTrlsu7q6Okkybdq0Ju/X1dUtcNV7S3zhC1/IoEGD8t5777VqO3qAtvjwww9z77335sMPPyx3KQAAAAAAXZZeLFBqnTJsHzBgQJI0GYRPnTo1tbW1Ta54b425n0T4+OOPP9c8AM0ZM2ZM9tlnn4wZM6bcpQAAAAAAdFl6sUCpdcqwfYsttkiSPPzww/Pde+SRR5IkgwcPbvP89fX1eemll1IoFNKvX782zwMAAAAAAADA4qlThu1bb711Vlllldx66615+eWXG6/X1dXlwgsvTGVlZfbaa6/G61OmTMnrr7+eKVOmzDPPs88+m88eSV9fX5+zzz47EyZMyHbbbZdlllmmQ18LAAAAAAAAAF1PZbkLaEplZWVOP/30HH744dlvv/2y6667prq6OnfddVfGjx+f448/Pquvvnrj+CuuuCLDhw/PMccck2OPPbbx+g9/+MMkySabbJIVVlgh06ZNy5NPPpkxY8akf//++cUvflHy1wYAAAAAAADAoq9Thu1JstVWW+XKK6/M73//+9x+++2ZPXt21lprrRx33HHZfffdWzTHvvvum4ceeigjR45MbW1tKisrs+qqq+bII4/MoYcemt69e3fwqwBIunfvntVXXz3du3cvdykAAAAAAF2WXixQaoXiZ/dZp1FtbW25SwAAAAAAAACgxGpqapod0ynPbAcAAAAAAACAzkzYDtDBXnzxxay99tp58cUXy10KAAAAAECXpRcLlJqwHaCD1dfX5/333099fX25SwEAAAAA6LL0YoFSE7YDAAAAAAAAQCsJ2wEAAAAAAACglYTtAAAAAAAAANBKhWKxWCx3EZ1VbW1tuUsAuoC6urq89NJLWW+99VJdXV3ucgAAAAAAuiS9WKA91dTUNDtG2L4QwnYAAAAAAACAxU9LwnbbyAN0sAkTJuSnP/1pJkyYUO5SAAAAAAC6LL1YoNSE7QAd7L333ssf//jHvPfee+UuBQAAAACgy9KLBUpN2A4AAAAAAAAArSRsBwAAAAAAAIBWErYDAAAAAAAAQCsJ2wE62LLLLpvDDjssyy67bLlLAQAAAADosvRigVIrFIvFYrmL6Kxqa2vLXQIAAAAAAAAAJVZTU9PsGCvbATrYjBkz8vzzz2fGjBnlLgUAAAAAoMvSiwVKTdgO0MFGjx6dIUOGZPTo0eUuBQAAAACgy9KLBUpN2A4AAAAAAAAArSRsBwAAAAAAAIBWErYDAAAAAAAAQCsJ2wE6WEVFRaqrq1NR4T+5AAAAAAAdRS8WKLVCsVgslruIzqq2trbcJQAAAAAAAABQYjU1Nc2O8dEeAAAAAAAAAGglYTtAB3vllVey9dZb55VXXil3KQAAAAAAXZZeLFBqwnaADjZz5sy8+uqrmTlzZrlLAQAAAADosvRigVITtgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdoAONmDAgFxxxRUZMGBAuUsBAAAAAOiy9GKBUisUi8ViuYvorGpra8tdAgAAAAAAAAAlVlNT0+wYK9sBOtjkyZPz29/+NpMnTy53KQAAAAAAXZZeLFBqwnaADjZp0qScdtppmTRpUrlLAQAAAADosvRigVITtgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdoAO1rt37+y+++7p3bt3uUsBAAAAAOiy9GKBUisUi8ViuYvorGpra8tdAgAAAAAAAAAlVlNT0+wYK9sBOtisWbMyYcKEzJo1q9ylAAAAAAB0WXqxQKkJ2wE62Msvv5wNN9wwL7/8crlLAQAAAADosvRigVITtgMAAAAAAABAKwnbAQAAAAAAAKCVhO0AAAAAAAAA0ErCdgAAAAAAAABopUKxWCyWu4jOqra2ttwlAF1AQ0NDZs+enaqqqlRU+IwTAAAAAEBH0IsF2lNNTU2zYypLUAfAYq2ioiI9evQodxkAAAAAAF2aXixQaj7WA9DBXnvttey222557bXXyl0KAAAAAECXpRcLlJqwHaCDTZ8+PY888kimT59e7lIAAAAAALosvVig1ITtAAAAAAAAANBKwnYAAAAAAAAAaCVhOwAAAAAAAAC0krAdoIOtvPLKOf/887PyyiuXuxQAAAAAgC5LLxYotUKxWCyWu4jOqra2ttwlAAAAAAAAAFBiNTU1zY6xsh2gg73//vu57LLL8v7775e7FAAAAACALksvFig1YTtABxs/fnyOP/74jB8/vtylAAAAAAB0WXqxQKkJ2wEAAAAAAACglYTtAAAAAAAAANBKwnYAAAAAAAAAaCVhO0AHW2qppbLttttmqaWWKncpAAAAAABdll4sUGqFYrFYLHcRnVVtbW25SwAAAAAAAACgxGpqapodY2U7QAdraGjIzJkz09DQUO5SAAAAAAC6LL1YoNTaLWx/5ZVXctJJJ+XrX/96vvGNb+THP/5xXn/99faaHmCRNWrUqPTr1y+jRo0qdykAAAAAAF2WXixQau0Stt9+++35+te/nnvuuScVFRX5+OOPc+ONN2aPPfbIgw8+2B5PAQAAAAAAAACdRruE7b/5zW+y3Xbb5cEHH8y1116bW2+9Ndddd12WWGKJnHfeee3xFAAAAAAAAADQabQobL/mmmsWeG/mzJmZOHFi9t133yy11FKN19dbb71stdVWtpIHAAAAAAAAoMtpUdh+6qmnZp999mnyjIsePXqkV69eGTly5DzXZ8yYkZdeeil9+/Ztn0oBAAAAAAAAoJMoFIvFYnODnn322Zx22ml55ZVX8vWvfz0/+MEPUlNT03j/t7/9bf70pz9lq622ygYbbJCPP/44//73vzNx4sT88Ic/zBFHHNGhL6Kj1NbWlrsEoAuYNWtW3n333fTt2zfdu3cvdzkAAAAAAF2SXizQnj6dhy9Ii8L2JCkWi7nqqqvyu9/9Lkly3HHH5dvf/nYKhUKKxWJGjBiRv/71r3n33XeTJCuuuGKOOOKI7L///p/jJZSXsB0AAAAAAABg8dOuYftcH3zwQc4999xcd911GThwYE455ZRsuummjffr6uqSJNXV1a0st/MRtgPtYezYsfn5z3+en//85xkwYEC5ywEAAAAA6JL0YoH21JKwvUVntn/aMsssk9NOOy3XXHNNqqqqsv/+++fkk0/OlClTknwSsneFoB2gvUydOjU333xzpk6dWu5SAAAAAAC6LL1YoNRaHbbPtcEGG+Saa67JaaedlgcffDBf+9rXcumll6ahoaE96wMAAAAAAACATqdVYft7772Xxx57LHfccUdeeOGFzJo1K9/4xjdy5513Zvfdd8/ZZ5+dPfbYI08++WRH1QsAAAAAAAAAZVfZkkGzZs3KmWeemWuvvTZz5sxJsVhMoVDICiuskJNPPjlDhw7NKaeckn322SennXZaDjrooOy888458cQTs8IKK3T0awAAAAAAAACAkioUi8Vic4NOP/30XH755dl2222z9957Z+mll86YMWMyYsSITJo0KVdffXU23HDDxvE33XRTzjnnnEyfPj1HHXVUDj/88A59ER2ltra23CUAXcDkyZNz5ZVXZr/99vMBJAAAAACADqIXC7SnmpqaZse0KGzfeuut069fv1x//fXzXH/11Vezxx575JBDDslJJ500z73p06dn+PDhufzyyzNq1KhWlt45CNsBAAAAAAAAFj8tCdtbdGb7Rx99lOWWW26+63379k2SzJw5c757Sy21VE466aTceOONLXkKgC5r6tSpuf322zN16tRylwIAAAAA0GXpxQKl1qKwfcstt8zDDz+ciy++OO+//35mz56d1157LT/5yU9SKBQyePDgBT52zTXXbLdiARZFY8eOzf7775+xY8eWuxQAAAAAgC5LLxYotcqWDPq///u/HHHEETnnnHNy7rnnznNvn332ydChQzukOAAAAAAAAADojFoUtq+00kq59dZbc9ddd+Xll1/Ohx9+mH79+mX77bfPOuus09E1AgAAAAAAAECn0qKwPUkqKioydOhQq9gBAAAAAAAAWOy16Mx2ANquR48eGThwYHr06FHuUgAAAAAAuiy9WKDUCsVisVjuIjqr2tracpcAAAAAAAAAQInV1NQ0O8bKdgAAAAAAAABoJWE7QAcbNWpUVl111YwaNarcpQAAAAAAdFl6sUCpCdsBOlhDQ0Pq6urS0NBQ7lIAAAAAALosvVig1Dp12P7CCy/kiCOOyBZbbJGNN9443/jGN3LLLbe0eb7Zs2dnjz32yMCBAzN06NB2rBQAAAAAAACAxUllWx40ceLELLnkkllmmWUWOm7q1KmZPn16+vfv3+rneOKJJ3LYYYelqqoqu+yyS3r16pW77rorJ5xwQiZMmJAjjzyy1XNeeOGFefPNN1v9OAAAAAAAAAD4tDatbP/yl7+cs88+u9lxv/nNb7Ljjju2ev76+vr87Gc/S6FQyBVXXJHTTz89J510Um666aasvfbaueCCCzJ27NhWzfniiy/mz3/+c37wgx+0uh4AAAAAAAAA+LQ2he3FYjHFYrHFY1vr8ccfz5tvvpldd9016623XuP16urqHHXUUamvr8/111/f4vlmzZqVk08+OYMGDcoBBxzQ6noAPo+111479913X9Zee+1ylwIAAAAA0GXpxQKl1qZt5FuqtrY2PXv2bPXjRo4cmSTZbrvt5ru37bbbzjOmJYYPH55x48blpptuSqFQaHU9AJ/HkksumUGDBpW7DAAAAACALk0vFii1FoftTz755Dx/fu+99+a7Nld9fX3GjBmThx56qE2fHpq7Rfxqq602373evXunpqYm48aNa9FcL7zwQi6++OJ8//vfz+qrr97qWgA+r/Hjx+d3v/tdjjvuuKy88srlLgcAAAAAoEvSiwVKrcVh+4EHHjjPqvCHH344Dz/88ALHF4vFFAqFHHrooa0uqq6uLknSq1evJu9XV1dn0qRJzc4za9as/PjHP866667bpjp69+6dioo27bQP0GjMmDG55JJLctRRR6Wmpqbc5QAAAAAAdEl6sUCptThs33PPPRvD9htuuCGrrrpqNt100ybHVlVVZfnll8+QIUOy/vrrt0+lbXD++edn3Lhxue6669KtW7dWP37q1KkdUBWwuPnwww8bv9fW1pa5GgAAAACArkkvFmhPLfnQTovD9l//+teNP99www3ZdNNNc+aZZ7atsmZUV1cnSaZNm9bk/bq6ugWuep/rxRdfzIgRI3LUUUdl4MCB7V4jAAAAAAAAAIuvFoftn/bKK6+0dx3zGDBgQJJk3Lhx2WCDDea5N3Xq1NTW1maTTTZZ6Byvvvpq5syZkwsuuCAXXHDBfPfHjBmTgQMHplevXnnqqafarXYAAAAAAAAAur42he2f9sEHH+TFF19MbW1t+vfvv8Ct5Vtjiy22yJ/+9Kc8/PDD2WWXXea598gjjyRJBg8evNA5BgwYkG984xtN3vvnP/+ZXr165Wtf+1qWWGKJz10vwMIst9xy+e53v5vllluu3KUAAAAAAHRZerFAqRWKxWKxLQ987733cvrpp+fuu+9OQ0NDkk/OdZ+7tfwVV1yR3/3ud7nwwguz+eabt2ru+vr6DB06NJMnT84111yTddddN8kn28fvu+++GTNmTG699dasvvrqSZIpU6aktrY2NTU16dOnT7PzDxw4MKuvvnruuOOOhY5zngcAAAAAAADA4qclZ7ZXtGXiKVOmZN99980dd9yRgQMHZv/9989nM/sdd9wx06dPbzbQbkplZWVOP/30FIvF7LfffjnllFNy1llnZY899sjo0aNzzDHHNAbtySfB/s4775wrrriiLS8HoEPV1dVl5MiRqaurK3cpAAAAAABdll4sUGptCtsvvPDCjB8/Pt/73vdy/fXX52c/+9l8Y1ZYYYWsscYabT4PfauttsqVV16ZzTbbLLfffnuuvPLKLLPMMvnNb36T7373u22aE6AcXn/99QwdOjSvv/56uUsBAAAAAOiy9GKBUmvTme3//ve/s+aaa+aoo45a6LiVVlopzz33XFueIkmy0UYb5eKLL2523LHHHptjjz22xfO++uqrba4JAAAAAAAAANq0sv3dd9/N2muv3ey47t27Z/r06W15CgAAAAAAAADotNoUtvfq1SuTJ09udty4cePSt2/ftjwFAAAAAAAAAHRabQrbN9lkk4waNSqjR49e4Jinn346r776ajbffPM2FwfQFVRWVmbZZZdNZWWbTu4AAAAAAKAF9GKBUmtT2H7IIYdkzpw5+e53v5vHHnssDQ0N89x/6qmncuKJJ6aysjLDhg1rjzoBFlnrr79+Ro8enfXXX7/cpQAAAAAAdFl6sUCpFYrFYrEtD7zsssvy61//OsViMUsttVSmT5+epZZaKpWVlZk6dWoKhUJ++tOfZv/992/vmkumtra23CUAAAAAAAAAUGI1NTXNjmnTyvYkOeigg3LllVdmyJAhaWhoSLFYTF1dXWbMmJFtt902l1122SIdtAO0l5dffjmbbbZZXn755XKXAgAAAADQZenFAqXWpkMr6uvrU1lZmY033jgXXnhhisViamtr09DQkJqamnTr1q1x7KRJk7Liiiu2W8EAi5pZs2ZlzJgxmTVrVrlLAQAAAADosvRigVJr08r2E044YZ4/FwqF9OnTJ8stt9w8QfvEiRNz4IEHfr4KAQAAAAAAAKCTaVPYfscdd+T//u//Fjpm/PjxOeCAAzJ+/Pg2FQYAAAAAAAAAnVWbwvavfvWrufbaa3Peeec1ef+tt97KQQcdlIkTJ+akk076XAUCAAAAAAAAQGfTprD93HPPzVZbbZW//OUvueSSS+a5N27cuBx44IGZOHFifvKTn2TYsGHtUSfAImv11VfPtddem9VXX73cpQAAAAAAdFl6sUCpFYrFYrEtD5wxY0aGDRuWUaNG5bTTTss3vvGNjBkzJgcffHDeeeed/OxnP8sBBxzQ3vWWVG1tbblLAAAAAAAAAKDEampqmh3TppXtSbLkkkvmL3/5S9ZYY42ceuqpueSSS3LQQQflnXfeySmnnLLIB+0A7WXSpEn59a9/nUmTJpW7FAAAAACALksvFii1NoftSdK7d+/89a9/zQorrJBzzjkn7733Xn7+859n//33b6/6ABZ5kydPztlnn53JkyeXuxQAAAAAgC5LLxYotcqWDHryyScXev+73/1ufvGLX2TnnXfOmmuuOd/4LbbYou0VAgAAAAAAAEAn06Kw/cADD0yhUFjomGKxmFtuuSW33HLLfPdefvnltlUHAAAAAAAAAJ1Qi8L2Pffcs9mwHQAAAAAAAAAWFy0K23/96193dB0AXdYyyyyTffbZJ8sss0y5SwEAAAAA6LL0YoFSKxSLxWJrH3TZZZdliSWWyD777NMRNXUatbW15S4BAAAAAAAAgBKrqalpdkxFWyY+66yz8u9//7stDwVY7Hz88cd544038vHHH5e7FAAAAACALksvFii1NoXtyy23XHr06NHetQB0Sa+++mo233zzvPrqq+UuBQAAAACgy9KLBUqtTWH7dtttl6effjqzZs1q73oAAAAAAAAAoNNrU9j+/e9/P926dcsJJ5yQd955p71rAgAAAAAAAIBOrbItDzr33HOzzjrr5O67784DDzyQ9dZbL/3790/37t3nG1soFPKrX/3qcxcKAAAAAAAAAJ1Fm8L2G264ofHnmTNn5tlnn82zzz7b5FhhOwAAAAAAAABdTaFYLBZb+6CRI0e2avzgwYNb+xSdQm1tbblLAAAAAAAAAKDEampqmh3TprB9cSFsBwAAAAAAAFj8tCRsryhBHQCLtdGjR+erX/1qRo8eXe5SAAAAAAC6LL1YoNSE7QAdbMaMGXnqqacyY8aMcpcCAAAAANBl6cUCpVbZ1gd+9NFH+dvf/pZ7770348aNy/Tp05scVygU8tJLL7W5QAAAAAAAAADobNoUtk+bNi377bdfXnvttXTr1i1VVVUpFovp27dv3nvvvcw9Br5///7tWiwAAAAAAAAAdAZt2kb+z3/+c0aPHp1vfvObefrpp/O1r30thUIhDz30UJ577rn8+te/znLLLZdBgwbl3nvvbe+aAQAAAAAAAKCs2hS233PPPVl++eXzs5/9LD169EihUGi816NHj+y5554ZMWJE7r777lxyySXtVizAomjVVVfNRRddlFVXXbXcpQAAAAAAdFl6sUCptSlsnzhxYtZbb71UVVUlSWPYPnv27MYxa621VgYPHpwbb7zx81cJsAirqanJN7/5zdTU1JS7FAAAAACALksvFii1NoXtPXr0SPfu3Rv/XF1dnSR577335hnXu3fvjB8//nOUB7Doe++993LxxRfP999IAAAAAADaj14sUGptCttXXHHFTJw4sfHPa6yxRpJk5MiRjdfq6+szatSoLLPMMp+vQoBF3IQJE3LiiSdmwoQJ5S4FAAAAAKDL0osFSq1NYfvmm2+e0aNHZ9q0aUmSIUOGpLKyMmeccUauvPLK/Pvf/873vve9TJgwIVtssUW7FgwAAAAAAAAA5VbZlgftvPPOefHFF/Pss89m++23zworrJAf/OAHOeuss3LaaaclSYrFYpZbbrmccMIJ7VowAAAAAAAAAJRbm8L2zTffPFdfffU81w455JBsuummufvuu/Phhx9mwIAB2XvvvW0jDwAAAAAAAECX06awfUEGDRqUQYMGteeUAIu86urqDBkyJNXV1eUuBQAAAACgy9KLBUqtUCwWi+UuorOqra0tdwkAAAAAAAAAlFhNTU2zY1q0sn3ixImfq5D+/ft/rscDLMrmzJmT6dOnZ6mllkq3bt3KXQ4AAAAAQJekFwuUWovC9i996UspFApteoJCoZCXXnqpTY8F6Ar+85//ZMiQIbnvvvsctQEAAAAA0EH0YoFSa9WZ7SuttFKqqqo6qhYAAAAAAAAAWCS0KGyvqKhIQ0NDpk2blqFDh2b33XfPZptt1tG1AQAAAAAAAECnVNGSQQ888EBOOumkrLTSSrn66qtzwAEHZMcdd8z555+fN954o6NrBAAAAAAAAIBOpUVhe9++fXPIIYfk+uuvz2233ZYjjjgiDQ0Nueiii7LLLrtk7733zqWXXpr33nuvo+sFAAAAAAAAgLIrFIvFYlsf/NRTT+Xmm2/OnXfemalTp6aysjJbbrll9t577+yyyy7tWWdZ1NbWlrsEoAuYPXt2pk6dmt69e6eqqqrc5QAAAAAAdEl6sUB7qqmpaXbM5wrb55o9e3YeeOCBXH755Xn88cfTp0+fPProo5932rITtgMAAAAAAAAsfloStrdoG/mFmTVrVv7973/nxhtvzDPPPJMk6dGjx+edFqDLGDNmTPbbb7+MGTOm3KUAAAAAAHRZerFAqVW29YFPPPFEbr755tx1112pq6tLt27dsvXWW2f33XfPV77ylfasEWCR9uGHH+aOO+7ISSedVO5SAAAAAAC6LL1YoNRaFba/8sorueWWW3Lbbbdl8uTJKRaL2WCDDbL77rtn1113TZ8+fTqqTgAAAAAAAADoNFoUtv/5z3/OLbfcktdeey3FYjGrrLJKjjzyyOy+++5ZffXVO7pGAAAAAAAAAOhUWhS2n3feeSkUCll33XWz++67Z9NNN02STJs2LS+88EKzj99oo40+X5UAAAAAAAAA0Im0ahv5l19+OS+//HKrnqBQKOSll15q1WMAupJ+/frltNNOS79+/cpdCgAAAABAl6UXC5RaoVgsFpsbdOCBB36uJ/n73//+uR5fLrW1teUuAQAAAAAAAIASq6mpaXZMi8L2xZWwHWgPH3zwQe6///7ssMMOWWaZZcpdDgAAAABAl6QXC7SnloTtFSWoA2CxNm7cuBx66KEZN25cuUsBAAAAAOiy9GKBUhO2AwAAAAAAAEArCdsBAAAAAAAAoJWE7QAAAAAAAADQSsJ2gA7Ws2fPbLTRRunZs2e5SwEAAAAA6LL0YoFSKxSLxWK5i+isamtry10CAAAAAAAAACVWU1PT7Bgr2wEAAAAAAACglVoUtq+77rr5yU9+0vjn4cOH59577+2wogC6khdeeCErrrhiXnjhhXKXAgAAAADQZenFAqXWorC9WCzm07vNDx8+PPfcc0+HFQXQlRSLxcyaNStO7QAAAAAA6Dh6sUCptShsX3LJJTNlypSOrgUAAAAAAAAAFgmVLRk0cODAPProoxk+fHhWXnnlJMmbb76ZG2+8sUVPsueee7a1PgAAAAAAAADodFoUth9zzDE55phjMnz48BQKhSTJM888k2eeeWahjysWiykUCsJ2AAAAAAAAALqUQrGFB1e8/fbbefTRR/P2229n+PDhWXfddfPlL3+5RU9yzDHHfK4iy6W2trbcJQBdwEcffZSxY8dmwIABWWKJJcpdDgAAAABAl6QXC7SnmpqaZse0OGz/tHXWWSd77bVXzjzzzDYVtqgQtgMAAAAAAAAsfloStle0ZeLLLrssRxxxRFseCrDYeeutt/K9730vb731VrlLAQAAAADosvRigVJrU9g+ePDgrLHGGvNcq6ury/Tp09ulKICuZMqUKbn88sszZcqUcpcCAAAAANBl6cUCpVb5eR784IMP5u9//3ueeeaZzJgxI0myxBJLZPPNN88BBxyQ7bffvl2KBAAAAAAAAIDOpM1h+5lnnpnLLrssc49879WrV5Jk2rRpefDBB/PQQw/loIMOyo9//OP2qRQAAAAAAAAAOok2he3/+te/cumll2bZZZfNd7/73eyxxx6NYXtdXV1uuumm/PGPf8xll12WQYMGZeedd27XogEAAAAAAACgnNp0ZvuVV16ZHj165PLLL88BBxzQGLQnSXV1dfbff//8/e9/T/fu3XPVVVe1W7EAi6K+ffvm+OOPT9++fctdCgAAAABAl6UXC5RaoTh3H/hW2HzzzbPZZpvlT3/600LH/e///m+efvrpPPXUU20usJxqa2vLXQIAAAAAAAAAJVZTU9PsmDatbJ89e3aWWGKJZsctscQSmT17dlueAqDLmDZtWh5++OFMmzat3KUAAAAAAHRZerFAqbUpbF911VXz5JNP5qOPPlrgmI8++ihPPvlkVl111TYXB9AVvPHGG9l9993zxhtvlLsUAAAAAIAuSy8WKLU2he1Dhw7N+++/n2OOOSZvvfXWfPfffPPNHHPMMZkyZUp22mmnz10kAAAAAAAAAHQmlW150GGHHZZ77703jzzySIYOHZoNN9wwK620UgqFQsaPH59Ro0Zlzpw52WCDDXLooYe2d80AAAAAAAAAUFZtCtt79uyZv//97znvvPNy3XXX5bnnnstzzz03z/199903P/jBD9KzZ8/2qhUAAAAAAAAAOoU2he1JstRSS+WUU07JCSeckBdffDHvvPNOkmT55ZfP+uuvnyWWWKLdigRYlFVVVaVfv36pqqoqdykAAAAAAF2WXixQaoVisVgsdxGdVW1tbblLAAAAAAAAAKDEampqmh3T5pXtpfDCCy/kggsuyHPPPZfZs2dnrbXWysEHH5zddtutRY9/4okncs011+Sll17Ku+++m9mzZ2fFFVfMpptumiOOOCJrrLFGB78CAAAAAAAAALqiinIXsCBPPPFE9ttvvzz11FP52te+lm9/+9upra3NCSeckIsuuqhFczz66KN5+umns/baa2evvfbK/vvvn9VXXz033XRT9thjjzz++OMd/CoAkpdeeinrr79+XnrppXKXAgAAAADQZenFAqXWKbeRr6+vz0477ZRJkybl6quvznrrrZckqaury7777psxY8bktttuy4ABAxY6z8yZM9OjR4/5rj/22GMZNmxYNthgg1x33XULfLxt5IH28Pzzz2fIkCG57777MmjQoHKXAwAAAADQJenFAu2pJdvId8qV7Y8//njefPPN7Lrrro1Be5JUV1fnqKOOSn19fa6//vpm52kqaE+SrbfeOr17986bb77ZbjUDAAAAAAAAsPjolGH7yJEjkyTbbbfdfPe23Xbbeca0xbPPPpupU6dm7bXXbvMcAAAAAAAAACy+KstdQFPGjh2bJFlttdXmu9e7d+/U1NRk3LhxLZ7viSeeyMiRIzNr1qyMGzcu9913X2pqavLjH/+4vUoGAAAAAAAAYDHSKcP2urq6JEmvXr2avF9dXZ1Jkya1eL6RI0dm+PDhjX9ebbXVct5552WDDTZY6ON69+6diopOufgfWIRsttlmue+++7LZZpst8L9rAAAAAAB8PnqxQKl9rrB9ypQpufnmmzNq1Kh88MEH2WqrrXLEEUckSf773//mrbfeyjbbbJMllliiXYptq2OPPTbHHntsZsyYkddeey0XXnhhvv3tb+dXv/pVdttttwU+burUqSWsEujKBg0alPr6+tTW1pa7FAAAAACALksvFmgvNTU1zY5p87Lt2267LTvuuGPOOuus3HbbbXn00UfzxhtvNN4fN25cjjnmmNx5552tnru6ujpJMm3atCbv19XVtekTSUsuuWQ22mijDB8+PGussUb+7//+L1OmTGn1PACtMXHixPzyl7/MxIkTy10KAAAAAECXpRcLlFqbwvannnoqP/rRj9K9e/f8+Mc/zj//+c8Ui8V5xuywww7p1atX7r777lbPP2DAgCRp8lz2qVOnpra2tsnz3FuqsrIyW265ZWbMmJFRo0a1eR6Alnj33Xdz/vnn59133y13KQAAAAAAXZZeLFBqbQrb//SnP6WysjIjRozIQQcd1OTZ51VVVVljjTXy2muvtXr+LbbYIkny8MMPz3fvkUceSZIMHjy41fN+2jvvvJPkk+AdAAAAAAAAAFqjTWH7888/n0GDBmWdddZZ6LgVV1yxMdRuja233jqrrLJKbr311rz88suN1+vq6nLhhRemsrIye+21V+P1KVOm5PXXX59vS/gnn3xyvhX3ySch/j333JNevXplk002aXV9AAAAAAAAACze2rSs++OPP27RgfB1dXUpFAqtL6qyMqeffnoOP/zw7Lffftl1111TXV2du+66K+PHj8/xxx+f1VdfvXH8FVdckeHDh+eYY47Jscce23j9u9/9bmpqarLhhhtmxRVXzMyZM/Pqq6/mySefTFVVVU4//fQsueSSra4PAAAAAAAAgMVbm8L2/v3759VXX13omPr6+rz66qttPlt9q622ypVXXpnf//73uf322zN79uystdZaOe6447L77ru3aI5jjz02Dz30UJ5++ulMmTIlhUIh/fr1yz777JODDz44a6+9dptqA2iNPn365IADDkifPn3KXQoAAAAAQJelFwuUWqHY1D7rzTjrrLMyYsSI/OxnP8v++++fJFlnnXWy11575cwzz0yS/OUvf8l5552XY445JkcffXT7Vl0itbW15S4BAAAAAAAAgBJryU7vbVrZfsQRR+S2227L6aefnueeey5f/vKXk3xydvp9992Xe+65JzfccEP69euXgw46qC1PAdBlfPTRRxk7dmwGDBiQJZZYotzlAAAAAAB0SXqxQKm1aWV7krz++us5/vjjM3r06BQKhRSLxcbz2YvFYtZYY40MHz48a6yxRrsWXEpWtgPt4fnnn8+QIUNy3333ZdCgQeUuBwAAAACgS9KLBdpTh61sT5I111wzN910U/7973/n0UcfzYQJEzJnzpysuOKK2WabbfK1r30t3bp1a+v0AAAAAAAAANBptSlsP/PMM7P00kvn6KOPzo477pgdd9yxvesCAAAAAAAAgE6roi0PuuKKK/Lqq6+2dy0AAAAAAAAAsEhoU9i+wgorpI1HvQMsdgqFQrp3755CoVDuUgAAAAAAuiy9WKDU2rSN/Fe+8pXccMMNqaurS3V1dXvXBNClbLTRRpk0aVK5ywAAAAAA6NL0YoFSa9PK9mOOOSb9+/fPd77znbz00kvtXRMAAAAAAAAAdGqFYhv2gz/ooIMyc+bMPP/88ykUCunbt2/69++f7t27z/8EhUIuvfTSdim21Gpra8tdAtAFvPrqq/nf//3f/OlPf8rAgQPLXQ4AAAAAQJekFwu0p5qammbHtGkb+ZEjRzb+XCwW88477+Sdd95pcqxzMYDF3ccff5wXXnghH3/8cblLAQAAAADosvRigVJrU9h+7733tncdAAAAAAAAALDIaFPYvtJKK7V3HQAAAAAAAACwyKgodwEAAAAAAAAAsKhp08r2z/rwww8zffr0FIvFJu/379+/PZ4GYJG02mqr5a9//WtWW221cpcCAAAAANBl6cUCpVYoLighb8a7776b888/P/fee2+mTp264CcoFPLSSy+1ucByqq2tLXcJAAAAAAAAAJRYTU1Ns2PatI38O++8k69//eu57rrr0qNHj/Tp0yfFYjGDBg3Ksssu27jCfeONN85mm23WlqcA6DLeeeed/OEPf8g777xT7lIAAAAAALosvVig1NoUtv/xj3/MO++8k+9973t54IEHsv3226dQKOQf//hHHn744fz973/PGmuskUKhkIsvvri9awZYpLz99ts55ZRT8vbbb5e7FAAAAACALksvFii1NoXtDz30UFZeeeUcddRRTd7fYost8te//jUvv/xyLrzwws9VIAAAAAAAAAB0Nm0K2ydPnpx11133/01S8ck0s2bNary2wgorZMstt/z/2rvz+Kiq+//j75udkAADhCUkCoqiiAQxsihSA1RFBNw3rCIqLigKdaO2+tNWsFbRirRflyqtgHsVgqgUC0UUoQgEtIiCQkjYYQgJATLJ3N8fccYksyczc5PJ69n6ILn33Hs/584E43nPOVcfffRRA0sEAAAAAAAAAAAAAKBxqVfYnpaW5n4uuyS1atVKUnUIX1NSUpLHNgAAAAAAAAAAAAAAmrp6he2dO3dWcXGx+/uTTjpJkvSf//zHve3IkSNas2aNMjIyGlgiADRtrVq10oUXXuj+YBIAAAAAAAAAIPwYiwUQbQn1OWjAgAH6xz/+oX379ql9+/YaMmSIWrRooT/+8Y/auXOnOnXqpPnz52v//v269tprw10zADQp3bp109y5c60uAwAAAAAAAABiGmOxAKLNMGuuBx+kb7/9Vi+99JKuvvpq9e/fX5K0YMECTZkyRQ6HQ4ZhyDRNnXTSSZo7d67S09PDXng02O12q0sAEAMcDodKSkrUunVrJSYmWl0OAAAAAAAAAMQkxmIBhJPNZgvYpl5huy87duzQf/7zHx06dEhdu3bVkCFDmvRfZoTtAMKhoKBAeXl5WrJkiXJycqwuBwAAAAAAAABiEmOxAMIpmLC9XsvI+5KZmcmy8QAAAAAAAAAAAACAmBdndQEAAAAAAAAAAAAAADQ1DZrZvn37dn311Vfas2ePKioqvLYxDEMTJkxoyGUAAAAAAAAAAAAAAGhU6hW2V1RU6Le//a3y8/MlSf4e+07YDgAAAAAAAAAAAACINfUK259//nnNnz9frVu31siRI9WtWzelpqaGuzYAiAm9evXS1q1b1bJlS6tLAQAAAAAAAICYxVgsgGgzTH/T0n0477zzVF5ervfff19dunSJRF2Ngt1ut7oEAAAAAAAAAAAAAECU2Wy2gG3i6nPi/fv368wzz4zpoB0AwmXLli26/PLLtWXLFqtLAQAAAAAAAICYxVgsgGirV9iemZmpI0eOhLsWAIhJZWVlWrJkicrKyqwuBQAAAAAAAABiFmOxAKKtXmH7FVdcofXr12vnzp3hrgcAAAAAAAAAAAAAgEavXmH7zTffrPPOO0+33nqrVq5cqXo89h0AAAAAAAAAAAAAgCYrIZhGQ4cO9bp9x44dGjt2rBISEpSRkSHDMDzaGIahxYsXN6xKAAAAAAAAAAAAAAAakaDC9uLiYr/7HQ6HduzYEZaCACDWdOnSRU899ZS6dOlidSkAAAAAAAAAELMYiwUQbYbJGvA+2e12q0sAAAAAAAAAAAAAAESZzWYL2KZez2wHAATPbrfr7bff5gM8AAAAAAAAABBBjMUCiDbCdgCIsMLCQt1+++0qLCy0uhQAAAAAAAAAiFmMxQKItqCe2V5ZWamSkhIlJSUpPT3dY7/dbtezzz6rpUuXym63q0OHDjr//PM1YcIEpaWlhb1oAAAAAAAAAAAAAACsFNTM9vfff1+DBg3S3//+d499paWluuaaa/TOO+9oz549cjgcKi4u1qxZs3TTTTepsrIy7EUDAAAAAAAAAAAAAGCloML2lStXyjAMXXXVVR77/u///k/btm1TSkqKfve73yk/P18vvPCCsrKy9PXXX+vdd98Ne9EAAAAAAAAAAAAAAFgpqLB948aNOvnkk9WhQwePfR988IEMw9Ddd9+tMWPG6KSTTtKwYcP08ssvyzAMffzxx2EvGgCaktTUVOXm5io1NdXqUgAAAAAAAAAgZjEWCyDagnpm+759+3T22Wd7bN+8ebP279+v+Ph4XXrppbX2de3aVb1799Z3330XnkoBoIk66aSTtGjRIqvLAAAAAAAAAICYxlgsgGgLamb74cOHVVVV5bF97dq1kqr/8rLZbB77O3furEOHDjWwRAAAAAAAAAAAAAAAGpegwvY2bdpo69atHtu/+uorGYah3r17ez2usrJSaWlpDSoQAJq6goICtW3bVgUFBVaXAgAAAAAAAAAxi7FYANEWVNjeu3dvff/99/rss8/c2w4cOKDFixdLks455xyvx23ZssXrc94BAAAAAAAAAAAAAGjKgnpm+5gxY/Tvf/9bEyZM0PDhw9W2bVt98sknKisrU8eOHTVkyBCPY4qKivTjjz9q5MiRYS8aAAAAAAAAAAAAAAArBRW2n3POObrzzjv1l7/8RfPmzZNhGDJNU8nJyZo2bZoSExM9jnnjjTdkmqYGDRoU9qIBAAAAAAAAAAAAALBSUGG7JE2cOFFDhgzRv/71L9ntdnXs2FGjRo1Sdna21/aJiYm64YYbNHjw4LAVCwAAAAAAAAAAAABAY2CYpmlaXURjZbfbrS4BQAw4evSoduzYoczMTKWkpFhdDgAAAAAAAADEJMZiAYSTzWYL2Iaw3Q/CdgAAAAAAAAAAAABofoIJ2+OiUAcANGvbtm3Tbbfdpm3btlldCgAAAAAAAADELMZiAUQbYTsARNjBgwf1zjvv6ODBg1aXAgAAAAAAAAAxi7FYANFG2A4AAAAAAAAAAAAAQIgI2wEAAAAAAAAAAAAACBFhOwAAAAAAAAAAAAAAISJsB4AI69ixox544AF17NjR6lIAAAAAAAAAIGYxFgsg2gzTNE2ri2is7Ha71SUAAAAAAAAAAAAAAKLMZrMFbMPMdgCIsEOHDunTTz/VoUOHrC4FAAAAAAAAAGIWY7EAoo2wHQAi7Mcff9SVV16pH3/80epSAAAAAAAAACBmMRYLINoI2wEAAAAAAAAAAAAACBFhOwAAAAAAAAAAAAAAISJsBwAAAAAAAAAAAAAgRITtABBhSUlJ6tatm5KSkqwuBQAAAAAAAABiFmOxAKLNME3TtLqIxsput1tdAgAAAAAAAAAAAAAgymw2W8A2zGwHAAAAAAAAAAAAACBEhO0AEGHffPONTjrpJH3zzTdWlwIAAAAAAAAAMYuxWADRRtgOABFWWVmp/fv3q7Ky0upSAAAAAAAAACBmMRYLINoI2wEAAAAAAAAAAAAACBFhOwAAAAAAAAAAAAAAISJsBwAAAAAAAAAAAAAgRIZpmqbVRTRWdrvd6hIAxICysjL973//U8+ePZWWlmZ1OQAAAAAAAAAQkxiLBRBONpstYBvCdj8I2wEAAAAAAAAAAACg+QkmbGcZeQCIsOLiYj388MMqLi62uhQAAAAAAAAAiFmMxQKINsJ2AIiwffv26a9//av27dtndSkAAAAAAAAAELMYiwUQbYTtAAAAAAAAAAAAAACEiLAdAAAAAAAAAAAAAIAQEbYDAAAAAAAAAAAAABAiwnYAiLB27drp5ptvVrt27awuBQAAAAAAAABiFmOxAKLNME3TtLqIxsput1tdAgAAAAAAAAAAAAAgymw2W8A2zGwHgAgrLy9XQUGBysvLrS4FAAAAAAAAAGIWY7EAoo2wHQAi7Pvvv1deXp6+//57q0sBAAAAAAAAgJjFWCyAaCNsBwAAAAAAAAAAAAAgRAlWF+DP+vXrNWPGDK1bt04Oh0Pdu3fXjTfeqJEjRwZ1/OrVq7V48WKtWrVKxcXFKi8vV5cuXTR06FDddtttatWqVYR7AAAAAAAAAAAAAACIRY02bF+5cqVuvvlmJSYmasSIEUpPT9eiRYt03333qbi4WLfffnvAc9xzzz2y2+0688wzNXr0aBmGoVWrVumVV17RokWL9Oabb6pdu3ZR6A0AAAAAAAAAAAAAIJY0yrC9srJSv/3tb2UYhubMmaOePXtKkiZMmKBrrrlGM2bM0IUXXqiuXbv6Pc+NN96oSy65RB06dHBvM01Tjz32mN544w298MILevTRRyPZFQBQXFyc0tLSFBfHkzsAAAAAAAAAIFIYiwUQbY3yb5svv/xShYWFuvjii91BuySlpaXpzjvvVGVlpf75z38GPM/48eNrBe2SZBiG7rzzTknSf//73/AWDgBenH766SosLNTpp59udSkAAAAAAAAAELMYiwUQbY0ybF+1apUkadCgQR77zjnnnFpt6iMhoXpCf3x8fL3PAQAAAAAAAAAAAABovhpl2L5161ZJ0vHHH++xr3Xr1rLZbNq2bVu9z//ee+9J+jm4B4BI+vbbbzVw4EB9++23VpcCAAAAAAAAADGLsVgA0dYon9leVlYmSUpPT/e6Py0tTbt27arXuTdu3KiZM2eqXbt2uuWWW/y2bd26Nc/1ANBgycnJ2rRpk5KTk2Wz2awuBwAAAAAAAABiEmOxAKKtUYbtkbJ9+3bddtttqqqq0vTp09W2bVu/7UtKSqJUGYBYdujQIfefdrvd4moAAAAAAAAAIDYxFgsgnIL50E6jDNvT0tIkSaWlpV73l5WV+Zz17ktxcbFuvPFGHThwQDNmzNCAAQMaXCcAAAAAAAAAAAAAoHlqlGukd+3aVZK8Ppe9pKREdrvd6/PcfSkqKtKvfvUr7dmzR88995zy8vLCVSoAAAAAAAAAAAAAoBlqlGH7WWedJUlavny5x77PP/9cktSvX7+gzlVUVKQbbrhBe/bs0bPPPqthw4aFr1AACELXrl01Z84c9weJAAAAAAAAAADhx1gsgGgzTNM0rS6irsrKSl144YXavXu33n77bZ166qmSqpePv+aaa/Tjjz9qwYIF6tatmyTpwIEDstvtstlstZ7D7grad+/erWeffVbnn39+SHXwPA8AAAAAAAAAAAAAaH6CeWZ7owzbJenLL7/ULbfcosTERF188cVKS0vTokWLVFRUpHvvvVd33HGHu+2MGTP0wgsv6K677tLdd9/t3j5kyBAVFxerT58+GjRokNfr1GxfF2E7gHDYvXu35s6dq+uuu04dO3a0uhwAAAAAAAAAiEmMxQIIp2DC9oQo1FEvAwYM0Ny5c/X888/ro48+ksPhUPfu3XXPPfdo1KhRQZ2juLhYkrRu3TqtW7fOaxt/YTsAhMOuXbv0+9//XkOGDOEXPAAAAAAAAACIEMZiAURbow3bJal379565ZVXAra7++67vYbmmzZtikRZAAAAAAAAAAAAAIBmLs7qAgAAAAAAAAAAAAAAaGoI2wEAAAAAAAAAAAAACBFhOwBEWOvWrTVq1Ci1bt3a6lIAAAAAAAAAIGYxFgsg2gzTNE2ri2is7Ha71SUAAAAAAAAAAAAAAKLMZrMFbMPMdgCIsIqKChUXF6uiosLqUgAAAAAAAAAgZjEWCyDaCNsBIMI2btyo008/XRs3brS6FAAAAAAAAACIWYzFAog2wnYAAAAAAAAAAAAAAEJE2A4AAAAAAAAAAAAAQIgI2wEAAAAAAAAAAAAACBFhOwAAAAAAAAAAAAAAITJM0zStLqKxstvtVpcAIAY4nU45HA4lJiYqLo7POAEAAAAAAABAJDAWCyCcbDZbwDYJUagDAJq1uLg4JScnW10GAAAAAAAAAMQ0xmIBRBsf6wGACNu8ebNGjhypzZs3W10KAAAAAAAAAMQsxmIBRBthOwBE2OHDh/X555/r8OHDVpcCAAAAAAAAADGLsVgA0UbYDgAAAAAAAAAAAABAiAjbAQAAAAAAAAAAAAAIEWE7AAAAAAAAAAAAAAAhImwHgAjLysrSc889p6ysLKtLAQAAAAAAAICYxVgsgGgzTNM0rS6isbLb7VaXAAAAAAAAAAAAAACIMpvNFrANM9sBIML279+vf/zjH9q/f7/VpQAAAAAAAABAzGIsFkC0EbYDQIQVFRXp3nvvVVFRkdWlAAAAAAAAAEDMYiwWQLQRtgMAAAAAAAAAAAAAECLCdgAAAAAAAAAAAAAAQkTYDgAAAAAAAAAAAABAiAjbASDCWrZsqXPOOUctW7a0uhQAAAAAAAAAiFmMxQKINsM0TdPqIhoru91udQkAAAAAAAAAAAAAgCiz2WwB2zCzHQAizOl06tixY3I6nVaXAgAAAAAAAAAxi7FYANFG2A4AEbZhwwZ17txZGzZssLoUAAAAAAAAAIhZjMUCiDbCdgAAAAAAAAAAAAAAQkTYDgAAAAAAAAAAAABAiAjbAQAAAAAAAAAAAAAIEWE7AAAAAAAAAAAAAAAhMkzTNK0uorGy2+1WlwAgBlRUVGjv3r3KyMhQUlKS1eUAAAAAAAAAQExiLBZAONlstoBtmNkOABGWlJSkLl268MsdAAAAAAAAAERQUx+Lff3115Wbm6u+ffvq3nvvVWVlpdd2s2fP1jnnnKOMjAy9/PLLtfY9+eSTOvnkkzV48GANHjxY48ePj0bpQLNF2A4AEbZ161aNHTtWW7dutboUAAAAAAAAAIhJVc4qvbv6XQ2bNEzvrn5XVc4qq0uqxVdw7rJt2zZNmzZNCxcu1FdffaU9e/Zo9uzZXtv26dNHr776qq644gqv+6+++motW7ZMy5Yt00svvdTg2gH4RtgOABFWUlKi+fPnq6SkxOpSAAAAAAAAACDm5G/OV86sHI3/YrzWdFuj8V+MV86sHOVvzo/4tefPn6/+/fvrF7/4hZ5++mm1bdtWZWVlkqS2bdvqhRde0MiRI/X444/7Pc+8efM0YsQIdejQQYZh6KabbtJ7773ntW2vXr3Uo0cPxcUR8wFW46cQAAAAAAAAAAAATVL+5nyNXThWO8p21Nq+s2ynxi4cG9HAfe/evZo0aZLmzp2r//znP2rZsqVHm4qKCuXn5wcM24uLi5Wdne3+Pjs7W0VFRfWq65///KfOPfdcjR49Wp999lm9zgEgOITtAAAAAAAAAAAAaBRM01SVs0qVzkpVVFXoWOUxHak8onJHucoqynTo2CEdOnZIB48e1L7yfXrwPw/KlOl5np+2/WbZbyK2pPzq1avVu3dvnXjiiZKkMWPGeLTxti0YpunZp2DcdNNNWrdunT777DNNmTJFN998s7Zv316vcwEILMHqAgAAAAAAAAAAQHSYpimn6ZSpn/40TTnlrLXdNE33fl9tnKZTkn7eX/Ocdc4tU773B3G+SF2zZj999dHVLpg2gWpytQnpPtS4Xqj3oVbtDbwPrusF855pSE3eQvMGvd9lqrisWCt2rNCgrEFhPbdU/fNkGIbfNt5mu3vTpUuXWqF4UVGRsrKyQq6pY8eO7q8HDBig008/XWvXrq01ax5A+BC2A0CEderUSb/73e/UqVMnq0sBAAAAAAARFmqQGa1QMZRwzoog0999iFaQGep9iESQ6es+NNYgE2gqdh/eHZHz5ubm6u6779YPP/ygE044QW+88Ybf9jt27NCll16qlStXeuwbNWqULrroIt1///3KyMjQa6+9pssuuyzkmoqLi9WlSxdJ0pYtW/T111+rZ8+eIZ8HQHAI2wEgwjp27KhJkyZZXQYAAAAAxISGBpmRChUbMsvQiiDTV0gZzSAz0H2IRpAZ7nCVIBOxLs6IkyGj9p/Gz98bhlF7u2rvjzPifj5Pne01j3Odq+b2YNrUrcmjZi81edTsqyYf/anbxmstClBTnfP5u16te2koLDVZcR9Cuqaf98OK4hW65INLAr53O7bsGLBNfXTo0EHPPPOMrrnmGtlsNl144YVKTExUamqq1/a7du1SfHy8131du3bVgw8+qOHDh8vpdOrcc8/V9ddfL0nauXOnrr76ai1btkyS9Pbbb+uxxx5TSUmJFi5cqOeee05vvPGGevfurSeeeELr1q1TQkKC4uPj9dRTT6l79+4R6T8AyTDr+9CHZsBut1tdAoAYUFJSoi+++EJnn322WrdubXU5AAAAgF/hDjLDFSo2JMisez4rg0x/9yHSQaavPkYzyGxouEqQiVhnZZBZK8CyKMj0GqpGOcisWYNVQWY47kNDg0xf7z+gsalyVilnVo52lu30+nuCIUOZaZlaN3ad4uO8h9wNVVpaqvT0dEnSnDlzNHv2bH300Ude286cOVMZGRm66qqrIlILgPCy2WwB2zCzHQAiqMpZpQ/WfaBJ0ybp2d8/q+vPvT5iv9QBAICmIdJBZn1DxXAGmXX7YEWQ6e0+WBVkhuM+hPu1IchEc1U3lLIiyKwbCFoRZPq6D9EMMi0LFcN0HwgyAaBxiI+L17TB0zR24VgZMmr9Pmuo+u/VqYOnRnRM9qWXXtK8efNUWVkpm82m5557zmfbCRMmRKwOANZgZrsfzGyHy+uvv64///nPcjqdGjx4sJ5++mklJHh+VmX27Nn661//qu+++05Tp07Vrbfe6tHm+++/13nnnadx48bp97//fTTKh0XyN+dryrIp2lG2w70tMy1T0wZP08juIy2sDABiW7SDzGDDtEgGmXX7aEWQWbePVgSZDbkP4Xpt3Ofx8X4gyESsCxRSWhFk+gtXfbUJd4DnN1yNUpAZtVAxhPMRZAIAgHDxNhbbJa2Lpg6eylgsgHoLZmY7YbsfhO3NQ2Vlpdfg3GXbtm0aPny4li5dqoyMDI0ZM0bnn3++xo4d69H266+/VmJiop577jn17dvXI2yvqqrSJZdcok6dOqlTp06E7TEsf3O+xi4c6zGg7vo05ayLZvFLHposq4NMX2FaNIPMuiGlFUFm0PchgkGm13A1ykGmt+sBsSzUkNKKIDNiYVoDZltaEWRaeR98nY8gEwAAALGsylml2Z/N1qTfscoogPBgGXk0a/Pnz9cTTzyhlJQUjRw5UlOnTlVhYaHS0tLUtm1bPf744/rkk090xhln6PHHH/d5nnnz5mnEiBHq0KGDJOmmm27S888/7zVs79WrlyQpLi7O67mee+45nX/++Tp8+LAOHz7c8E6iUapyVmnKsileAx9TpgwZ+s2y3+iiEy7y+suet5DSyiCz5sw8yZog09d9iGaQ6fM+RDHI9HcfwvXauM9DkIlmKtQgs27oZEWQGbYwrQFBZt2Q0oogM5r3IdSQkiATAAAAACIvPi5efdr0kb6W+rTpQ9AOICoI2xGT9u7dq0mTJmnRokU68cQT9de//tWjTUVFhfLz8wOeq7i4WNnZ2e7vs7OzVVRUFHJN33zzjf79739r/vz5+tOf/hTy8Wg6VuxYUWu5orpMmSouK1bmXzJlyCDIRLPS0CCzbihlRZBZ7zAtjEFm3eOsCDIjeR9CvWY43g8EmQAAAAAANH3Jycnq0aOHkpOTrS4FQDNB2I6YtHr1avXu3VsnnniiJGnMmDF6+OGHa7UZM2ZMvc5dnycvOBwO3XPPPXrhhRcUH8+n6WLd7sO7g2rncDrCfu1wB5l191sZZAYM0yIYZPq6nhVBZjjuQ32v2ZD3A0EmAAAAAAAAIu2UU07RihUrrC4DQDNC2I6YZJpmwFCnZcuWQZ2rS5cu2r59u/v7oqIiZWVlhVTP7t27tXXrVl199dWSpJKSEpmmqYMHD2rGjBkhnQuNX8eWHYNq97cL/6Z+nfsFHVISZAIAAAAAAAAAADQe3h8sDTRxubm5Kigo0A8//CBJeuONN/y237Fjh/r37+9136hRo/Thhx9qz549Mk1Tr732mi677LKQ6snKytLmzZtVUFCggoIC3X777brhhhsI2mPUwMyBykyrXiLeG0OGuqR10ajuo9QlvYsy0zLVqWUndWzZURmpGWqf2l5tW7SVLcWm1smt1Sq5ldKT0tUysaVSE1OVkpCi5IRkJcYnKiEuwR26AwAAAAAAAEBztmHDBh133HHasGGD1aUAaCYI2xGTOnTooGeeeUbXXHONLrjgApWXlysxMVGpqale2+/atcvn8u5du3bVgw8+qOHDh6tv375q3769rr/+eknSzp07NXjwYHfbt99+W6eddprmzZunqVOn6rTTTtP69evD30E0avFx8Zo2eJokeQTuru+nDp6q+DgeKQAAAAAAAAAA4eJ0OlVWVian02l1KQCaCcOszwOomwm73W51CWiA0tJSpaenS5LmzJmj2bNn66OPPvLadubMmcrIyNBVV10VzRIR4/I352vKsinaUbbDva1LWhdNHTxVI7uPtLAyAAAAAAAAAIg9BQUFysvL05IlS5STk2N1OQCaOJvNFrANz2xHzHrppZc0b948VVZWymaz6bnnnvPZdsKECdErDM3GyO4jddEJF2n2Z7M16XeT9Ozvn9X1517PjHYAAAAAAAAAAIAYQNiOmPXrX/9av/71r60uA81cfFy8+rTpI30t9WnTh6AdAAAAAAAAAAAgRrCMvB8sIw8gHMrLy/X999/rpJNOUmpqqtXlAAAAAAAAAEBMYiwWQDgFs4w8YbsfhO0AAAAAAAAAAAAA0PwEE7bHRaEOAGjWioqKdP/996uoqMjqUgAAAAAAAAAgZjEWCyDaCNsBIML279+vv/3tb9q/f7/VpQAAAAAAAABAzGIsFkC0EbYDAAAAAAAAAAAAABAiwnYAAAAAAAAAAAAAAEJE2A4AAAAAAAAAAAAAQIgI2wEgwtq3b6877rhD7du3t7oUAAAAAAAAAIhZjMUCiDbDNE3T6iIaK7vdbnUJAAAAAAAAAAAAAIAos9lsAdswsx0AIqysrEyrVq1SWVmZ1aUAAAAAAAAAQMxiLBZAtBG2A0CEbdmyRRdeeKG2bNlidSkAAAAAAAAAELMYiwUQbYTtAAAAAAAAAAAAAACEiLAdAAAAAAAAAAAAAIAQEbYDAAAAAAAAAAAAABAiwnYAiLCEhAS1a9dOCQkJVpcCAAAAAAAAADGLsVgA0WaYpmlaXURjZbfbrS4BAAAAAAAAAAAAABBlNpstYBtmtgMAAAAAAAAAAAAAECLCdgCIsI0bN+rMM8/Uxo0brS4FAAAAAAAAAGIWY7EAoo2wHQAirKKiQj/++KMqKiqsLgUAAAAAAAAAYhZjsQCijbAdAAAAAAAAAAAAAIAQEbYDAAAAAAAAAAAAABAiwnYAAAAAAAAAAAAAAEJE2A4AEdatWze988476tatm9WlAAAAAAAAAEDMYiwWQLQZpmmaVhfRWNntdqtLAAAAAAAAAAAAAABEmc1mC9iGme0AEGG7du3Sk08+qV27dlldCgAAAAAAAADELMZiAUQbYTsARNju3bv11FNPaffu3VaXAgAAAAAAAAAxi7FYANFG2A4AAAAAAAAAAAAAQIgI2wEAAAAAAAAAAAAACBFhOwAAAAAAAAAAAAAAISJsB4AIa9Omja688kq1adPG6lIAAAAAAAAAIGY19bHYp59+Wn379lXfvn31xBNP+Gw3ffp09evXT+3atdMnn3wSxQoB1GWYpmlaXURjZbfbrS4BAAAAAAAAAAAATVxlZaUSEhJ87v/iiy/061//WosXL1ZCQoKGDx+uhx9+WEOHDvVou3r1arVr104TJ07UXXfdpQsuuCCSpQPNls1mC9imUc9sX79+vW699VadddZZ6tOnj6644grl5+cHffz+/fv14osvauLEiRoyZIh69OihHj16RLBiAPB09OhR/fDDDzp69KjVpQAAAAAAAABAzLJiLHbNmjUaPXq0hgwZovPOO0/z58+XJBUWFqp79+566qmndNFFF+mll17ye573339f1157rVq2bKnk5GSNGTNG//znP722zc3NVbdu3cLeFwCh8/0RGoutXLlSN998sxITEzVixAilp6dr0aJFuu+++1RcXKzbb7894Dk2b96s6dOnyzAMHX/88WrRooWOHDkSheoB4GebNm1SXl6elixZopycHKvLAQAAAAAAAICYFO2x2JKSEk2ePFlvvvmmOnXqpP379ysvL0/9+/eXJB04cEAnnHCCHnjggYDnKioq0tlnn+3+/rjjjnMH9wAar0YZtldWVuq3v/2tDMPQnDlz1LNnT0nShAkTdM0112jGjBm68MIL1bVrV7/nOfHEEzV79mydeuqpSktL04UXXqgff/wxCj0AAAAAAAAAAABAtFQ5q7Tu4Dqpl7Tu4Dr1cvZSfFx8RK+5atUqbd26VVdddZV7m2ma2rx5s7Kzs5WSkqLLL7886PMZhlHrPAAav0a5jPyXX36pwsJCXXzxxe6gXZLS0tJ05513qrKy0ufSGTW1b99eZ511ltLS0iJZLgAAAAAAAAAAACySvzlfObNyNKlgknSFNKlgknJm5Sh/c/CPJq4P0zR12mmnadmyZe5/NmzYoHPOOUeSlJqaWitA9ycrK0uFhYXu77dv366srKyI1A0gfBpl2L5q1SpJ0qBBgzz2uf6CcrUBAAAAAAAAAABA85S/OV9jF47VjrIdtbbvLNupsQvHRjRw79evn3744QctW7bMvW3Dhg2qqKjw2v6rr77SJZdc4nXf6NGj9eabb+rw4cM6duyY5syZo0svvTQSZQMIo0a5jPzWrVslSccff7zHvtatW8tms2nbtm0Rr6N169aKi2uUn0cA0IS0atXK/afNZrO4GgAAAAAAAABoekzTlCmz1p+Vzkr95rPfyJTnkuumTBky9Nvlv9WYM8dEZEl5m82mBQsW6P7779cjjzwih8Oh4447Th988IGOHDkiwzBqjQnb7Xalp6d7HSceOXKk1q5dq8GDB0uSrrnmGl155ZWSpNWrV+uRRx7RwoULJUnTpk3TzJkztXfvXt11111KSUnR2rVrlZGREfY+AvDPMBvhQx/GjRunzz//XIsWLfIauA8bNky7du3S119/HdJ5Xc9s37RpU1Dt7XZ7SOcHAAAAAAAAAPzMWzhW608v21zHSQrp2Lrt/V7fxzE191f/38e+YM/to2+++u6tnddrBbgvrtwx2Htet2/++u7tWPe1/PQ9UD9DOdajb0EcG+h++Do2mPdxuF5rf33zd2x9XuuAP6N+XutQfzaDqjXAa91Q8y+br0FZnqspR9tDDz2kSy65RAMGDLC6FABBCGYCZaOc2Q4AsaLKWaUVO1Zo9+Hd6tiyowZmDozIJygBAAAAIFz8DvhHaAC+7mB6fQbvXf9TEAGR12vUrMNfqBEguAgmhPJVX83aPa4V5LH++ubvvnh7/QMdW7PGUI6tez+CPbbuax3MsQFfTwtea2/HeutboGPrdc/r+XMd6H75qhUAGovdh3dbXYIk6cknn7S6BABh1ijD9rS0NElSaWmp1/1lZWVKT0+PZklo5p5++mnNnTtXknT55Zfr4Ycf9tpu7969uuOOO7R161YlJSVp+vTp7k+obdmyRffdd5/27dunyspK3X///brsssui1gdEX/7mfE1ZNqXWs4Iy0zI1bfA0jew+0sLKAABALAo0sB7sAHyog/c1B9NDDdbc11Jw4VjIQY23QCZAcOE1wAq030ftvq7n79ha1wpwbM1+B/ta1z021Ne6Zo31eZ/UrTuYY4N6f0bhtQ64L1Df6xGseTtvpH+uAaCpMWRU/2kYMmT8/GfNr+v86WrvOj7UY71eL8CxNesN5diAtfo4tmb7UI6t27eAx9Y8zlsNQdwXn/UH0bdQjg3mfeLt2FDeJ9X/93O9II619H0SxM+Ar77V7Hso75OA99nP+8SQoZU7V+ra/GsD/VWhji07BmwDAPXRKMP2rl27SpK2bdumXr161dpXUlIiu92uM844w4LKEIsqKyuVkOD7R+GLL77Qe++9p88++0wJCQkaPny4BgwYoKFDh3q0feyxx5Sbm6t3331Xa9as0dixY7VmzRolJCRowoQJuuGGG3Tddddpz549Gjp0qAYMGKDMzMxIdg8Wyd+cr7ELx3oMVu0s26mxC8dq1kWzCNwBSPK/FJ3kf1aMe389Bu+9Dbp7nM/PsaYavixhsOGYr5qDPdZrOwUO9vz1zd+xwdTl894HuG91jw32ta57bKivdb1DuRrXsuq1Dvr1CFBDKK+1z/dOBH+uAaCp8RlCBBig93pMMw/HvLULeGw9A66afQv1WI+agjw2mPeJt2N93gNvfWpIwGXI570MeGy43icRDMcC9c1X7cHWVbemQO8Tb9cH0LwNO36YMtMytbNsp9f/NjJkKDMtUwMzB1pQHYDmoFGG7WeddZZefPFFLV++XCNGjKi17/PPP5ck9evXz4rS0ISsWbNGjz32mEpLS+V0OjV58mSNGjVKhYWFGjJkiMaPH6+lS5fq4osv1p133unzPO+//76uvfZatWzZUpI0ZswY/fOf//Qats+bN09r166VJPXt21cdOnTQl19+qUGDBumbb77RL3/5S0lShw4d1KtXL73//vuaMGFCBHoPK1U5qzRl2RSvv9yZMmXI0EP/eUhnZ56tuLg474PpfoILybplCf2GLUEGe/U5tmbfatbv71hvfQvmWK/11TxnPUI5X8cGeq19HRvsa13vUK6Br1dDjnX1LZRj697HYI/1eV/rEcoF9XPr5z4BQFMSbIDQ1MKxmu1DObZufcEe661dwGOjHI55vfdBHBvs+6TusaG+1mpC4ZjX90mwIZSfvvs6NlDffJ43lLoIxwAAQCMQHxevaYOnaezCsTJk1Bpvcf3eMnXwVB7tCSBiGmXYPnDgQGVnZ2vBggW64YYbdOqpp0qqXj7+L3/5ixISEnTppZe62x84cEB2u102m01t27a1qmw0IiUlJZo8ebLefPNNderUSfv371deXp769+8vqfo9c8IJJ+iBBx4IeK6ioiKdffbZ7u+PO+44zZ8/36PdgQMH5HQ61b59e/e27OxsFRUVSZLOOOMMvf3225owYYJ+/PFHrVq1Sscff3xDu4pGaMWOFbWWjq/LlKmdh3fqpFdOimJVAJq7YAOEcARc3gbhAx3rau+z1iYcjtW6lrdjg+hbKMd6vfdBHBvs+6TusSG/1g0MuBTE0oT+7mWD3yeNLBwL9D7x1Z9g3ifergUAAAAAjc3I7iM166JZXh/pOXXwVFYYBRBRjTJsT0hI0B/+8Afdcsstuu6663TxxRcrLS1NixYtUlFRke69915169bN3X7OnDl64YUXdNddd+nuu++uda6HHnrI/fXevXs9tj3wwAME9DFo1apV2rp1q6666ir3NtM0tXnzZmVnZyslJUWXX3550OerObhYc2avv3Z1286cOVO/+93vNHjwYHXt2lW/+MUv/C5fj6Zr9+HdYTtXMAFC3UF0qXGHY3WvEeyx3toFc6yvPgU6ttZx3o5tBOFYKK9XzbahvF5NLRzz+T4J8mfAV9/99S3ocxOOAQAAAAAARMTI7iN10QkXafZnszXpd5P07O+f1fXnXs+MdgAR12iTvgEDBmju3Ll6/vnn9dFHH8nhcKh79+665557NGrUqKDP8/777/vddtdddxG2xyDTNHXaaafpww8/9NhXWFio1NTUoAOIrKwsFRYWur/fvn27srKyPNq53kf79u1zz24vKipyt83OztasWbPc7a+44grl5eUF3Sc0HR1bdgyq3XuXvKdBXQYRjgEAAAAAAABAA8XHxWtU71FqcVcL/bL3LwnaAUSFYfqbptvM2e12q0tAPR08eFADBw7Uiy++qMGDB0uSNmzYoB49emjXrl0aMmSINm/e7G7/1Vdf6fe//70++OADj3MtX75cDzzwgP71r38pISFBw4cP129+8xsNGzbMo+2ECROUnZ2thx56SGvWrNGNN96otWvXKiEhQXv27FFGRoYMw9Cnn36qe++9V6tWrVKLFi0idh9gjSpnlXJm5Whn2U6vz2Q2ZCgzLVPrxq7jFz4AAAAAAAAAAIBGyGazBWwTF4U6gKhr06aN5s6dq6efflrnnnuuBgwYoMcee0xOp9Nr++3btyslJcXrvkGDBumSSy7RoEGDNGDAAOXl5bmD9rVr19Zaqv7RRx/VqlWrlJubqwkTJuj//u//3EvFf/zxx8rNzVX//v315z//WW+99RZBe4yKj4vXtMHTJP28NLuL6/upg6cStAMAAAAAAABAGO3bt0+vvPKK9u3bZ3UpAJoJZrb7wcz25uOhhx7SJZdcogEDBlhdCmJI/uZ8TVk2RTvKdri3dUnroqmDp2pk95EWVgYAAAAAAAAAsaegoEB5eXlasmSJcnJyrC4HQBPHzHYgSE8++SRBO8JuZPeRKhhboGdznpXelZ7NeVbrxq4jaAcAAAAAAAAAAIgBhO0AEEHxcfHq06aP9LXUp00flo4HAAAAAAAAAPi0ZcsWXXDBBTrrrLM0bNgwffvttz7bvv7668rNzVXfvn117733qrKy0r1vxowZOvvsszV48GD98pe/1Jo1a6JRPtDsELYDAAAAAAAAAAAAjcDkyZN144036r///a/uvvtuTZw40Wu7bdu2adq0aVq4cKG++uor7dmzR7Nnz5Ykff3113r55Ze1aNEiLVu2TLfeeqseeOCBaHYDaDYI2wEgwtLS0pSXl6e0tDSrSwEAAAAAAACAmGXFWOyaNWs0evRoDRkyROedd57mz5/v3rdo0SINHTpU5557rgYPHqzVq1f7PdfevXtVUFCgq666SpI0atQoFRYWqrCw0KPtvHnzNGLECHXo0EGGYeimm27Se++9595fWVmp8vJySVJJSYkyMzPD0V0AdSRYXQAAxLoTTzyx1i85AAAAAAAAAIDwi/ZYbElJiSZPnqw333xTnTp10v79+5WXl6f+/furtLRUEydO1IIFC9S9e3c5HA4dOXLE7/mKi4vVqVMnJSRUx3eGYSgrK0tFRUU67rjjPNpmZ2e7v8/OzlZRUZEkqVevXrrjjjt0xhlnqE2bNkpOTtaCBQvC3HsAEmE7AERcVVWVDh8+rJYtWyo+nme2AwAAAAAAAEAkRHssdtWqVdq6dat7JrokmaapzZs3a+PGjRo2bJi6d+8uSUpMTFRiYmLAcxqGUet70zSDqqVmu+3bt+vjjz/WV199pU6dOunll1/Wbbfdpvz8/KDOBSB4LCMPABH29ddfq2vXrvr666+tLgUAAAAAAAAAYla0x2JN09Rpp52mZcuWuf/ZsGGDzjnnnHqdr0uXLtqxY4cqKyvd5y8uLlZWVpbXttu3b3d/X1RU5G73wQcf6NRTT1WnTp0kSdddd52++OILVVVV1asuAL4RtgMAAAAAAAAAAAAh6tevn3744QctW7bMvW3Dhg2qqKjQkCFD9Omnn2rz5s2SJIfDoUOHDkmS7rjjDq/LumdkZKh37956++23JUnz589Xdna2xxLyUvXz3D/88EPt2bNHpmnqtdde02WXXSZJ6tq1q7788kuVlZVJkj7++GOdfPLJrLwKRADLyAMAAAAAAAAAAKBJq3JWad3BdVIvad3Bderl7KX4uMiGy23atNHcuXP16KOP6uGHH5bD4VBWVpZmz56tE044Qc8//7xuvfVWORwOxcfHa/r06TrzzDO1bt063XrrrV7POX36dE2YMEHPPvus0tPTNXPmTPe+iRMnavjw4Ro+fLi6du2qBx98UMOHD5fT6dS5556r66+/XpJ08cUXa+3atRo6dKiSkpKUlpamF198MaL3AmiuDDPYhz00Q3a73eoSAMSAgoIC5eXlacmSJcrJybG6HAAAAAAAAACIKfmb8zVl2RTtKNvh3paZlqlpg6dpZPeRFlbmyW63a9y4cXr//fetLgVAADabLWAblpEHAAAAAAAAAABAk5S/OV9jF46tFbRL0s6ynRq7cKzyN+dbVJl3NpuNoB2IIcxs94OZ7ahpy5YtuvPOO3XgwAG1bt1aL7zwgk455RSvbV9//XX9+c9/ltPp1ODBg/X0008rISFBS5cu1SOPPOJut2/fPnXo0EFLly6NUi9gBYfDoZKSErVu3VqJiYlWlwMAAAAAAAAAUeeKo0yZMk3T/afHNpnu9jW3eztHlbNK575xrnYd3uX1moYMZaZlat3YdRFfUh5A7AlmZjthux+E7ahp9OjRuvrqq3Xddddp3rx5mjlzphYtWuTRbtu2bRo+fLiWLl2qjIwMjRkzRueff77Gjh3r0faaa67RoEGDdNddd0WhB7BClbNKK3as0O7Du9WxZUcNzBzIL3UAAAAAADRTdQMjbyGS+39+Qqm62+uez73fTxvXNp/HBhl6uduYnnWFWkutYwKFciH2LdA1A/W/uov1e71q3qNw1FLzHtW3llrvpUi9XkG+d8JSi58wNpTzudqE473jrU/1eb0aWou384RSi7d7Wp/7a7X5l83XoKxBVpcBoIkJJmxPiEIdgCXWrFmjxx57TKWlpXI6nZo8ebJGjRolSVq0aJH++Mc/qqKiQoZhaPr06crNzfV5rr1796qgoEDvvfeeJGnUqFF68MEHVVhYqOOOO65W23nz5mnEiBHq0KGDJOmmm27S888/7xG279y5U5999plmzJgRxl6jMWlKzwkCAAAAoiVaQVO0B8JNNTxEqfm96xyBrtnUQjTXPQq2Fn9tfL6fgny9fIU7wb5eVtUS6PVqTO+daNUS6PVyv/8C1Bvo9Qr6tfBRCwDAOrsP77a6BAAxirAdMamkpESTJ0/Wm2++qU6dOmn//v3Ky8tT//79VVpaqokTJ2rBggXq3r27HA6Hjhw54vd8xcXF6tSpkxISqn9kDMNQVlaWioqKPML24uJiZWdnu7/Pzs5WUVGRxznffPNNDR06VBkZGWHoMRob13OC6v7HtOs5QbMumkXgDgDNmN+B6yAHn93n8jOwHImB8EBt1MCgyaOeJhCiBfN61azXdZ6GhF6+QplQa6l5n8NZS33ub4NDLx9hitXvHZ/3N8qhl8drXo9a3HUEei0C9AMAEH2GDBmGUetr1/8k/fy94bnN9bXHsTW3+Ti25ra620OtxW8/gqyl7v3we01f56/xdaB7F6jeoGvxcz6P+xNi32odH2T/fb1eHq9zPV+vcNTi2iZDIdficY/cpwr9/kb0vRPCz3FD+xZsm4a+XvX5e+eL4i902QeXKZCOLTsGbAMA9UHYjpi0atUqbd26VVdddZV7m2ma2rx5szZu3Khhw4ape/fukqTExMSgnqNd8xcG1/mC4avd3LlzNXXq1KDOgaalylmlKcumeB1QNGXKkKHfLPuNLjrhoma9pLzfgesGzk7wOC7A4HM4B8JNRSlECbFvoVzTX/9dfavP61Wz3pr3qL61NDSU8XgvxULo1cBQxts9Csd7p2b7hrxeDa3F63sgQC3e7lEw9QZ6bQAA0VffwWxfg7+hDKy72vg81uKgqTGFXr7uXSSDpnAGF9GqJZTXS/UImuqez3WORvfeiWLQFEz/XV/Xt5ZI/L1TdzwLAGLNuVnnKjMtUzvLdnr9725D1c9sH5g50ILqADQHhO2ISaZp6rTTTtOHH37osW/jxo0hn69Lly7asWOHKisrlZCQINM0VVxcrKysLK9tt2/f7v6+qKjIo90XX3yh8vJyDRkyJORa0Pit2LGi1tLxdZkyVVxWrP6v91fLxJZBh2iur13niFbQFGzAHWwtAADr1Gcw27Wt5nZfbYIZ8PV5bJCDz97OadVAuLdzRiz0CnA+j9cn0Pn81RJCEOCvllDeXz7vbyMKUVQjrKp3LXXvTZiDpqYYovm95zVrDPH18navAAAAEHvi4+I1bfA0jV04VoaMWuOPrt8Zpw6e2qwnPQGILMJ2xKR+/frphx9+0LJlyzR48GBJ0oYNG9SjRw8NGTJEzzzzjDZv3lxrGflWrVrpjjvu0IgRI3TxxRfXOl9GRoZ69+6tt99+W9ddd53mz5+v7OxsjyXkpernuV900UW6//77lZGRoddee02XXVZ7GZs5c+bouuuuU3w8/4KPRcE+/+eHkh8iXAm8qc9gtmtb3e0e5wti8N31dX1rCdiPACGKv0HsRh96RSCU8Xl/wxQ0BdP/SNdiKLQQxV8b13mCvb9Ree+E+HNcn74F83p5vP4NeL3C/fcOQRMAAAAAIJaN7D5Ssy6apSnLptSaBJWZlqmpg6fyOE8AEWWYNac7oha73W51CWiAtWvX6tFHH5XdbpfD4VBWVpZmz56tlJQU/etf/9LUqVPlcDgUHx+v6dOn68wzz9TAgQM1c+ZM9e3b1+N833//vSZMmCC73a709HTNnDlTp556qiRp4sSJGj58uIYPHy5J+vvf/67nn39eTqdT5557rp555hn3UvWlpaU67bTTtGzZMnXt2jVq9wPRs7xouUb9c1TAdo+c/Yh6te/V8EAnCkGTx7YohGi+gqZga6l7HAAAAAAAAIDYVeWs0sJvFmrB0gW6+LyLddFpzfsxngAazmazBWxD2O4HYXvzYrfbNW7cOL3//vtWl4ImrspZpZxZOQGfE7Ru7Dp+2QMAAAAAAAAAAGiEggnb46JQB9Ak2Gw2gnaEhes5QZJqzc6u+T3PCQIAAAAAAACA8Dp48KA++OADHTx40OpSADQThO2IWW3btlVZWVlYz7l3715dccUVys3N1dlnn60vv/zSZ9tPPvlE/fv315lnnqkbbrihVi0HDx7U+PHjlZubq/79++uxxx4La52wnus5QZ3TOtfanpmWqVkXzeI5QQAAAAAAAAAQZtu2bdO4ceO0bds2q0sB0EwQtgMheOyxx5Sbm6vVq1frhRde0Pjx41VZWenRrqysTBMnTtTrr7+ur776Sp06ddL06dPd+++++26dfvrpWr16tVauXKnbbrstmt1AlIzsPlIFYwv0bM6z0rvSsznPat3YdQTtAAAAAAAAAAAAMYCwHTHtb3/7m4YNG6Y+ffpozpw57u05OTl6/PHHNWLECJ155pmaOXNmUOebN2+ebrnlFklS37591aFDB6+z2xcvXqw+ffro5JNPliSNGzdO7733niTphx9+UEFBgSZMmOBu36lTp3r3EY1bfFy8+rTpI30t9WnTh6XjAQAAAAAAAAAAYgRhO2JacnKyFi9erLfeektTpkypNQt9z549+vDDD7Vo0SK9+OKLWr16td9zHThwQE6nU+3bt3dvy87OVlFRkUfboqIiZWdnu78/7rjjtHPnTjmdTm3atEldunTR5MmTdd555+myyy7T+vXrw9BbAAAAAAAAAAAAANFC2I6YduWVV0qSevToofj4eO3evdu97/rrr5cktWvXTiNGjNCyZcsCns8wjFrfm6YZdFsXh8Oh//73v7r88su1dOlSTZgwQddee63X5egRG1JSUtS7d2+lpKRYXQoAAAAAAAAAxCzGYgFEG2E7YlpycrL76/j4eFVVVfls6yscd2nbtq0kad++fe5tRUVFysrK8miblZWlwsJC9/eFhYXq3Lmz4uLilJ2drc6dO+vcc8+VJA0dOlQOh0M7duwIrlNocnr06KGlS5eqR48eVpcCAAAAAAAAADGLsVgA0UbYjmZr7ty5kiS73a6FCxdq8ODBkqTHH39cL7/8stdjRo8erVdeeUWStGbNGu3evVsDBgzwaDd06FCtXbtW3333nSTp1Vdf1WWXXSZJ6tOnj9LT0/XNN99IktauXStJ6ty5cxh7h0ajqkoJy5cr8b33lLB8ueTnAx8AAAAAAAAAAABoOhKsLgCwSnZ2ti666CLt3r1b48eP15lnnilJ+uabb5STk+P1mEcffVS33367cnNzlZiYqP/7v/9TQkL1j9HUqVPVuXNn3XTTTUpPT9ef//xn/epXv1JlZaV69uypmTNnSqqeQT9z5kzdc889Onr0qFJSUvT3v/9diYmJ0ek4oiYxP1+pU6YorsaqBc7MTJVPmybHyJEWVgYAAAAAAAAAsWf9+vU6//zztWjRIvXu3dvqcgA0A4bp76HTzZzdbre6BERITk6O3njjDfXs2bPWdqfT6f4XcVwcCz+g/hLz89Vy7FjJNFXzAQXmT48rODxrFoE7AAAAAAAAAIRRQUGB8vLytGTJEp+T6gAgWDabLWAb0kSghri4OC1evJigHQ1TVaXUKVM8gnZJMn76fFPqb37DkvIAAAAAAAAAAABNGMvIo1kqKCiwugTEsIQVK2otHV+XYZoyiovVctw4VXXvLqWmymzRQmZq6s9ft2ghtWzp/tps2VJybW/RQjLqxvgAAAAAAAAAAACIJsJ2AAgzY/fuoNol5efX+xpmzYD+pz/dX9cJ52uF+DXb/bRNP22r+bWSkgj0AQAAAAAAAAAA/CBsB4AwMzt2DKrdsSuvlNm2rYwjR6QjR2SUl8soL//565/+lOvro0fdx7rb7t8fmT7ExdUO4b0F9TUD+gAz873N0ldiYkRqBwAAAAAAANA8nXzyyfr888/VtWtXq0sB0EwYpvnTA4ThwW63W10CgKaoqkqtc3Jk7NzpfkZ7TaZhyMzMVMm6dVJ8fPDndTp/Dt6PHJEOH/7565/Cd4+va4T4XtvVDfQrKsJ3HwIwExI8Zt17zLgPYXl9j3OlpoZ2fwEAAAAAAAAAAH5is9kCtiFs94OwHUB9Jebnq+XYsZJUK3A3f1qa/fCsWXKMHGlFaf5VVtYO9GuE87VC+bpf152Zf+SIjMOHf/7ata+8XEZVVdS6YyYlBb3Uvtd2fpbad834V1xc1PoDAAAAAAAAwLft27frT3/6k+6//35lZ2dbXQ6AJo6wvYEI2wE0RGJ+vlKnTFHcjh3ubc4uXVQ+dWrjDNqjpaLC/2z8ujPzf5rB73WWft3g3zXjP4r/anPPuPe2vH4YZukrJUX66UMaAAAAAAAAAHwrKChQXl6elixZopycHKvLAdDEBRO288x2AIgQx8iRKrnoIm2bPVt/nDRJDz77rI6//nqWNk9KkpmUJLVurYhE4qYpHTvmd6n9gDPzA83SP3LEfTn3+SPENAzvS+2HcZa+EhMJ9AEAAAAAAAAACBFhOwBEUny8Dvbpozcl3danj45v7kF7NBiGlJIiMyVFstkiE+g7ndLRo6HPzA9llv6xY9XdMc3qDw0cPhyJnkiSzPj46kD+p5n2Xmfp152ZH+IsfSXwKwcAAAAAAAAAILYw8g0AQKji4n6eIR6pa1RVeS6PX59Z+l5m5rvbOxySJKOqSiork1FWFqneyExM9Ajlg1lqv1Zw72Opfdfs/Wa/agQAAAAAAAAAIKoI2wEgwjIyMnTvvfcqIyPD6lLQlMTHS+npMtPTIxfoOxzeZ9l7m3EfxFL7dWftq7xchtMpSTIcjupw/9ChSPVGZnKy36X2687aD2WpfbNFCyklpfqDFgAAAAAAAGiUGIsFEG2GaZoRG8Nv6ux2u9UlAADQdJmmVFFRr6X2/Qb/NWf8l5dXL7UfrS7VXDo/xKX2/c7Md50nObn6UQgAAAAAAAAAAEvZbLaAbQjb/SBsBxAOpaWlKigoUE5OjtLT060uB4gtpikdPRp4ef0Ql9qv1e7o0eh1x/WIghrL44c0S9/fzHxX28TEqPUHAAAAAAAgmhiLBRBOhO0NRNgOIBwKCgqUl5enJUuWKCcnx+pyAITK6fw5eA9lln4wy/O7vq6oiFp3zISE6nD+p9De7yz9IEL8ujP41bJl9WMQAAAAAAAAooyxWADhFEzYzjPbAQAA/ImLk1q2rA6nI3WNykrP5fHDOUu/vFxGVZUkyaislEpLZZSWRqo3MpOSgl5qv+6s/UBL7bvaKy4uYvUDAAAAAAAAQDAI2wEAAKyWkCC1aiWzVavIBfoVFf5n5ocyS79u8H/kiHT4sIyfFkwyKiqqZ+uXlESqNzJTUjyW2ncvr1/PpfZrhvpKSZEMI2L1AwAAAAAAAGj6CNsBAACag6QkmUlJUuvWkQn0TVM6duzn4D3QLP1Awb+X9kZ5uftyxtGjMo4ejURPqrtjGLWXxw80S7/uzPwgZukrKYlAHwAAAAAAAGjCCNsBIMISExPVuXNnJSYmWl0KAESOYUgpKTJTUiSbLTKBvtMpHT0a+vL6Xpbarztr3/31sWPV3THN6g8NHD4ciZ5Iksz4eM/Z94Fm5oc4S18J/LoPAAAAAGg+GIsFEG2GaZoRW620qbPb7VaXAAAAgGiqqvo5eA+0vL6PGfx+l9o/ckSGwxG17piJiZ6hfIhL7dedwa+fjnW1U3x81PoDAAAAAAAARIvNZgvYhrDdD8J2AAAAhJ3DUSvQD/ss/fJyGU5n1LpjJif7XWq/7qz9UJbaN1NTpZQUKS4uav0BAAAAAAAAJML2BiNsBxAO//vf/3TllVfqnXfeUc+ePa0uBwAQ60xTqqjwPuM+XLP0y8url9qPVpdqzrpvwFL7vmbpKzm5+lEIAAAAAIAmjbFYAOEUTNjOQxwBIMIcDod27twpRxSXDQYANGOGISUny0xOltq0UUQicdOUjh71COdDmqX/U8jv/rruDP6jR3/ukivkjxAzLq52CB/qLH1/M/Nd50lKilj9AAAAAIBqjMUCiDbCdgAAAAChMQx30Ky2bSMT6DudtZbbD3qWfhD73F9XVFR3x+mUyspklJVFoieSJDMhodbs+6Bm6dcJ+70G/zXaKYH/vAMAAAAAAIgmRmMAAAAAND5xcdXLvLdsGZkwX5IqK30H+nWX1w9xqX3j8OHq76uqJElGZaVUWiqjtDRSvZGZlOQ5Mz+IpfZ9zsyvsdS+O9CPi4tY/QAAAAAAAE0NYTsAAACA5ikhQUpPl5meHrlA3+Hwv7x+EEvt+5yZ7/oQgFldvVFRUT1bv6QkUr2RmZLiEeh7DfJDWGq/5vFKSaleOQEAAAAAAKAJMEzTjNi4UlNnt9utLgFADCgtLVVBQYFycnKUnp5udTkAACCWmKZ07FjQS+37bedrln55eXS7VJ+l9oOZme86T1ISgT4AAAAQoxiLBRBONpstYBvCdj8I2wEAAAA0e06ndPRo6DPzQ5mlf+xY1LpjxsXVXmrfxyz7hszSV2Ji1PoDAAAAAAAig7C9gQjbAYTDjh079Morr+iWW25RZmam1eUAAAA0PlVVtZfH9zEzP+AsfS8z8+Vq73BErTtmYqJHkB9qiO9vBr9SU6X4+Kj1BwAAAGgqGIsFEE6E7Q1E2A4gHAoKCpSXl6clS5YoJyfH6nIAAACaJ4ejVqAf8iz9OoF+3Vn7Ki+X4XRGrTtmcnLQS+37nI3vY6l917kUFxe1/gAAAADhwFgsgHAKJmxPiEIdAAAAAABYKzFRSkyU2aqVIvKJc9OUHI56LbXvdQa/r7D/p8/LG8eOVS+/f/BgJHpT3aWas+4bsNS+r1n6Sk6WDCNi9QMAAAAAEGmE7QAAAAAANJRhSElJMpOSpDZtIhfoHz3qd6n9WkvnB7PUft1Z+keO/Nwl1/cHDkSiNzINo/by+BGYpa/ERAJ9AAAAAEDEELYDAAAAANAUGIZ79rjato1MoO90/hy8R2qWfkVFdXdMs/qDAYcPR6InkiQzPt4z0K/5fYghvrcZ/EpgaAUAAAAAmiv+ixAAIqxt27a6/vrr1bZtW6tLAQAAAPyLi6sOl1u2jEyYL0mVlZ7L44djlv5Px6q8XEZVlSRV/1laKqO0NFK9kZmY6BnWB7HUvs/l+Wsste/6gIDi4yNWPwAAQCxhLBZAtBmmaUbsv5+bOrvdbnUJAAAAAAAgVA6H/5n5/mbpB5qZ7/oQQBSHU8yUFL9L7Td0lr5atGC5fQAAAACow2azBWxD2O4HYTuAcDhy5Ii2bt2qrl27qkWLFlaXAwAAAKChTFM6dsz7jHtfs/RDWWrf9UGAaHYpxJn5NQN9vzPzXfuTkgj0AQBAxDEWCyCcggnbWUYeACLsu+++U15enpYsWaKcnByrywEAAADQUIYhpaTITEmRbLbILLlvmu6Z9iEtr+9lqf26s/bdXx89+nOXXO32749Eb2TGxXksj+9tOX2fs/TrzMz3GugnJkakdgAA0HQwFgsg2gjbAQAAAAAAGhvD+DlEliIT6FdV/Ry8B1peP8SZ+e7g3+Go7o7TKZWVySgri0RPJElmQkKtpfa9hvIhLK/vbUl+xcdHrH4AAAAATQ9hOwAAAAAAQHMUHy+lpclMS4tMmC9JDkftED7cs/TLy6uDfElGZaVUWiqjtDRSvZGZlBT0Uvte2/lZat81419xcRGrHwAAAEB4EbYDAAAAAAAgMhITpcREma1aRW65fYfDc2Z+uGfpm9XVGxUVMioqpIMHI9Gb6i65Ztx7W14/DLP0lZJSvXICAAAAgAYjbAeACDMMQ0lJSTIYzAAAAACA8DIMKSlJZlKS1KZN5AL9o0c9Z9yHMkvfy4cAas3SP3Lk5y7V+T7s3XE9osAVwkdglr4SEwn0AQCWYCwWQLQZpmlGbKWwps5ut1tdAgAAAAAAAGKd0/lz8B7MLP06gb7XGfyupfZdXx87FrXumPHx1YH8TzPtPWbpN2CpfdcsfSUwhwgAAACRZbPZArYhbPeDsB0AAAAAAAAxobLSd6Bfd3n9+iy1X14uo7Iyat0xExM9ls4PZqn9WrP2fSy17wr+FR8ftf4AAACg8SFsbyDCdgDhsGnTJt1222168cUX1aNHD6vLAQAAAAAgMhwO/8vrB7HUvs9Z+q4PCDidUeuOmZzsd6n9hs7SV0qKFBcXtf4AQHPAWCyAcAombGe9JQCIsKNHj2r9+vU6evSo1aUAAAAAABA5iYlSYqLMVq0Ukdk9pilVVAS31H49Z+kb5eXuyxnHjlUvvx/BCTlmjVn3AWfm+5ul76OdkpMlnlsMoBlhLBZAtBG2AwAAAAAAAGj8DENKTpaZnCzZbJEL9F2z7/3N0vcV6Hubpf/Tedxf1wiA3O0ixIyL81geP6RZ+v5m5rv+TEqKWP0AAACNHWE7AAAAAAAAAEjVgb4rcJYiE+hXVXkuj+9lZr7HLP0gZua7g3+Ho7o7TqdUViajrCwSPZEkmQkJtYJ6d3BfzxC/7gx+tWwpxcdHrH4AAICGIGwHAAAAAAAAgGiJj5fS0mSmpUUmzJckh6N2CB/sLP1gl9ovL5dRVSVJMiorpdJSGaWlkeqNzKSkoJfarztrP9BS+672iouLWP0AACB2GaZpRux3uqbOHsHnMQFoPg4ePKilS5fqvPPOU5s2bawuBwAAAAAAoGFMU3I4PIP7IJba9zqDv+5S+65AP4pD12ZKisdS++Gcpa+UlOqVEwBEFGOxAMLJZrMFbEPY7gdhOwAAAAAAAABYwDSlY8f8LrUf8sz8urP0jxyJXndcjyhwLY8faJZ+3Zn5QczSV1ISgT4AAGFE2N5AhO0AwmHPnj165513dOWVV6pDhw5WlwMAAAAAAABJcjp/nk0fqVn6x45FrTtmfLzn7Ht/M/NDWGrfvdx+YmLU+gPUB2OxAMKJsL2BCNsBhENBQYHy8vK0ZMkS5eTkWF0OAAAAAAAAoqWy0nN5/HDM0q/ZvrIyat0xExM9Z+aHuNR+3Rn8+ulYVzvFx0etP4g9jMUCCKdgwvaEKNQBAAAAAAAAAEDzk5AgpafLTE9XxGa9ORy1wvmQZun7W26/5gcEnE5JkuFwyHA4pEOHItUbmcnJfpfa9zkzP8hZ+kpJkeLiIlY/mp+2bduqsLBQaWlpYTvn3r17dccdd2jr1q1KSkrS9OnTNWDAAK9tP/nkEz3yyCOqrKzUaaedpr/85S9hrQWAf406bF+/fr1mzJihdevWyeFwqHv37rrxxhs1cuTIoM/hdDo1d+5cvfXWW9q2bZtSU1PVv39/TZo0SV27do1c8QAAAAAAAAAARFpiopSYKLNVq8gE+qYpVVR4zswPZZa+v6X2Xft+Yhw7Vr38/sGDkehNdZdqzroPNDO/HrP0lZwsGUbE6kfse+yxx5Sbm6t3331Xa9as0dixY7VmzRolJNSO9crKyjRx4kTl5+fr5JNP1gMPPKDp06frkUcesahyoPlptGH7ypUrdfPNNysxMVEjRoxQenq6Fi1apPvuu0/FxcW6/fbbgzrPo48+qrffflvdu3fX9ddfr/3792vhwoX6/PPP9eabb6p79+4R7gkAAAAAAAAAAE2UYUjJyTKTkyWbLXKB/tGjgYP7EJfar/WhgKNHf+6Sa6Z/hJhxcbVD+FBn6fubme86T1JSxOpvsqqq1GbdOl0jqc26dVKvXlF7LMHf/vY35efna9++fbr//vs1ZswYSVJOTo4uv/xyrVy5Urt27dK4ceM0YcKEgOebN2+e1q5dK0nq27evOnTooC+//FKDBg2q1W7x4sXq06ePTj75ZEnSuHHjdPXVVxO2A1HUKMP2yspK/fa3v5VhGJozZ4569uwpSZowYYKuueYazZgxQxdeeGHAmelffvml3n77beXm5uq1115T0k//8rnkkkt000036f/9v/+n2bNnR7o7AJq5Vq1a6cILL1SrVq2sLgUAAAAAAABofAzDHTRLikygX1X182z6QMvr+5i173ep/SNHZFRUVHfH6ZTKymSUlUWiJ5IkMyGh1ox7r7PxQwjxvc3gV0KjjJC8SszPV+qUKeqzY4fekKRJk+T8059UPm2aHCGsllxfycnJWrx4sTZt2qRf/vKXuvrqq92z0Pfs2aMPP/xQ+/fvV15envr376/c3Fyf5zpw4ICcTqfat2/v3padna2ioiKPtkVFRcrOznZ/f9xxx2nnzp1yOp2K43EJQFQ0yr8pv/zySxUWFuqyyy5zB+2SlJaWpjvvvFOTJk3SP//5T02ePNnved555x1J0r333usO2iVp4MCBGjRokD777DP9+OOP6tatW2Q6AgCSunXrprlz51pdBgAAAAAAANB8xcdLaWky09IiE+ZLksNRO4SPxCz9qipJklFZKZWWyigtjVRvZCYlec7MD2KpfZ+hfo2l9t2BfhgC4cT8fLUcO7Z6hYQajJ071XLsWB2eNSvigfuVV14pSerRo4fi4+O1e/dudenSRZJ0/fXXS5LatWunESNGaNmyZX7Ddkky6jyGwDR9v2vrtgUQXY0ybF+1apUkeSyHIUnnnHNOrTb+rFy5Uqmpqerbt6/HPlfY/t///pewHUBEORwOlZSUqHXr1kpMTLS6HAAAAAAAAACRkJgoJSbKbNUqcsvtOxyeM/PrO0v/p5DfY5b+T8GuUVFRPVu/pCQSvanuUkqKR6Af0iz95GSl3nefZJqqGzkbpinTMJT6m9+o5KKLIrqkfHJysvvr+Ph4Vf30oQhvAoXjbdu2lSTt27fPPbu9qKhIWVlZHm2zsrL02Wefub8vLCxU586dmdUORFGjDNu3bt0qSTr++OM99rVu3Vo2m03btm3ze47y8nLt3btXJ598suK9/AXqWoLedS0AiJT//e9/ysvL05IlS5STk2N1OQAAAAAAAACaIsOQkpJkJiVJrVtHLtA/dqz28viBZukHmplfd5b+kSM/d+noURlHj0p2eyR6I8M0ZRQXK2HFClV6meAZDXPnztWAAQNkt9u1cOFCvfrqq5Kkxx9/XJ07d9att97qcczo0aP1yiuv6KGHHtKaNWu0e/duDRgwwKPd0KFD9cADD+i7777TySefrFdffVWXXXZZxPsE4GeNMmwv++k5Junp6V73p6WladeuXX7PUfrT0ilpaWk+z1HzWt60bt2aT/8AaDDXs9pbtWolm81mcTUAAAAAAAAAYCGnU/opsFd5uXT4sPev/e1zfb1tm/TddwEvmV5WJkVwbNZms7lzJ8Mw3BNH4+LidPLJJ2vUqFHauXOn7r33Xg0bNkyS9N133+mcc87xOmb87LPP6le/+pX69eunpKQkzZkzRxkZGZKkRx55RJmZmbr99ttls9n0t7/9TTfeeKMqKyt1+umn65lnnnGPSQOIvEYZtjcWJRFcGgVA83Ho0CH3n/YIfUITAAAAAAAAAJqUhASpVavqf+p7iuXLlT5qVMB2pWlpqozQ2OyBAwfkcDjcY7/ff/+9JMlut8vpdGrIkCG666673O1d23ft2qW8vDyvY8ZJSUl66623am1ztZs0aVKt788991ytWLHC3a6qqopxaCBMgplA2Sinbbs+/eOanV5XWVmZz1nvLq79vmauu7b7mvkOAAAAAAAAAACAxqty4EA5MzNl+ngOumkYcnbposqBA6NcmX9xcXFavHgxqysDMaBR/hS7nqfu7bnsJSUlstvtXp/nXlNqaqoyMjJUVFSkqqoqj/2uZ7W7rgUAAAAAAAAAAIAmJD5e5dOmSZJH4O76vnzqVCk+PuqlSVJBQYF69uxpybUBREejDNvPOussSdLy5cs99n3++eeSpH79+gU8T79+/VReXq41a9Z47HOd23UtAIiUXr16aevWrerVq5fVpQAAAAAAAABATHGMHKnDs2bJ7Ny51nYzM1OHZ82SY+RIiyoD0Bw0yrB94MCBys7O1oIFC7Rx40b39rKyMv3lL39RQkKCLr30Uvf2AwcOaMuWLTpw4ECt81x11VWSpOeee04VFRXu7StWrNDy5ct11llnqVu3bhHuDYDmLj4+Xq1atVK8RZ+eBAAAAAAAAIBY5hg5UiUFBSqdP19lL7+s0vnzVbJuHUE7gIhrlGF7QkKC/vCHP8g0TV133XX63e9+pz/+8Y8aPXq0vv/+e9111121QvI5c+booosu0pw5c2qdZ8CAAbryyiu1evVqXXrppXrqqaf04IMPavz48UpLS9P/+3//L8o9A9AcbdmyRZdffrm2bNlidSkAAAAAAAAAEJvi47Wpc2eNmjtXmzp3tmzpeADNS4LVBfgyYMAAzZ07V88//7w++ugjORwOde/eXffcc49GjRoV9Hkef/xx9ejRQ2+99ZZef/11paamKi8vT5MmTWJWO4CoKCsr05IlS1RWVmZ1KQAAAAAAAAAQsxiLBRBthmmaptVFNFZ2u93qEgDEgIKCAuXl5WnJkiXKycmxuhwAAAAAAAAAiEmMxQIIJ5vNFrBNo1xGHgAAAAAAAAAAAACAxoywHQAAAAAAAAAAAACAEBG2A0CEdenSRU899ZS6dOlidSkAAAAAAAAAELMYiwUQbTyz3Q+e2Q4AAAAAAAAAAAAAzQ/PbAeARsBut+vtt9/mAzwAAAAAAAAAEEGMxQKINsJ2AIiwwsJC3X777SosLLS6FAAAAAAAAACIWYzFAog2wnYAAAAAAAAAAAAAAEJE2A4AAAAAAAAAAAAAQIgI2wEAAAAAAAAAAAAACBFhOwBEWGpqqnJzc5Wammp1KQAAAAAAAAAQsxiLBRBthmmaptVFNFZ2u93qEgAAAAAAAAAAAAAAUWaz2QK2YWY7AAAAAAAAAAAAAAAhImwHgAgrKChQ27ZtVVBQYHUpAAAAAAAAABCzGIsFEG2E7QAAAAAAAAAAAAAAhIiwHQAAAAAAAAAAAACAEBG2AwAAAAAAAAAAAAAQIsJ2AAAAAAAAAAAAAABCZJimaVpdRGNlt9utLgFADDh69Kh27NihzMxMpaSkWF0OAAAAAAAAAMQkxmIBhJPNZgvYhrDdD8J2AAAAAAAAAAAAAGh+ggnbWUYeACJs27Ztuu2227Rt2zarSwEAAAAAAACAmMVYLIBoI2wHgAg7ePCg3nnnHR08eNDqUgAAAAAAAAAgZjEWCyDaCNsBAAAAAAAAAAAAAAgRYTsAAAAAAAAAAAAAACEibAcAAAAAAAAAAAAAIESGaZqm1UUAAAAAAAAAAAAAANCUMLMdAAAAAAAAAAAAAIAQEbYDAAAAAAAAAAAAABAiwnYAAAAAAAAAAAAAAEJE2A4AAAAAAAAAAAAAQIgI2wEAAAAAAAAAAAAACBFhOwAAAAAAAAAAAAAAIUqwugAAAAAAAJqCHj16eGxLTExUu3btlJubq/Hjx3ttU1//+Mc/9NZbb2nbtm1yOBzq16+fXn/99bCdP5zOP/98OZ1OLV682GNfQUGBrrrqKknS5MmTddttt/k8T2Fhof74xz9q9erVKikpkWma+sc//qH+/ftHrHYAAAAAAOqLsB0AAAAAgBBceuml7q9LS0v1zTffaMGCBfrkk0/0yiuvaMCAAQ2+xqJFi/TEE0+odevWGjJkiFJTU3XCCSc0+LyRsGXLFm3btk033nij1/3z5s2r9bWvsN3pdGrixInauHGj+vTpo+OPP15xcXFq3769HnroIb3//vsE7wAAAACARoWwHQAAAACAEDz55JO1vnc4HHr44Yc1b948PfHEE8rPz2/wNVwzxP/85z9r4MCBDT5fJP373/+WJOXl5XnsczgcWrhwoQzDUPv27bVlyxZ98803Ou200zzaFhcXa+PGjcrNzdWcOXMiXjcAAAAAAA3FM9sBAAAAAGiAxMRE3X333ZKk7777TocOHWrwOXft2iVJys7ObvC5Im3JkiVKT09Xbm6ux75ly5bJbrfrrLPOci8lX3Ome01Nqc8AAAAAAEiSYZqmaXURAAAAAAA0dq7nsW/atMljX3l5uc444wxJ0ooVK9S2bdta+w8fPqzXXntNn3zyiQoLCxUfH6+ePXtq7NixGjZsmLvdjBkz9MILL3i9fs0l1O12u1566SV9+umn2rlzp1q0aKHTTz9dN910kwYNGuS19i5duujjjz/WSy+9pAULFqioqEiDBw/WX/7yl5BqrOnAgQMaNGiQLrzwQk2fPt1j/8SJE/XJJ5/oD3/4g8466yxdcMEFat++vZYtW6b4+HiPe1tXv379tGrVKq/7JOnTTz9VVlaW+/t///vfmjNnjr7++muVl5crMzNTw4cP16233qqWLVvWOvZXv/qVVq1apU8//VRr167V66+/ru+//17x8fFavXq1z2sCAAAAAODCMvIAAAAAADTQN998I0my2WweQfu+fft04403avPmzerYsaPOPvtsHT16VOvWrdOECRP061//WuPHj5cknXrqqbr00kv12Wefad++fbrggguUmpoqSWrfvr0kaffu3RozZoy2b9+uzMxMDRs2TAcOHNCKFSu0fPlyTZkyRWPHjvWo0el0asKECVq9erXOOuss9ejRQ23atAm5xpqWLVumqqoqr0vIl5aWaunSpUpKStIFF1ygVq1aqXfv3lq/fr0+//xzDR482N320ksv1d69e7V8+XIdd9xxOvPMMyVJJ5xwgrp06aKvvvpKhYWFGjRokDIyMtzHue6NVL28/2uvvabk5GT17t1bNptN33zzjf76179q2bJlmj17dq32Li+99JLeeecd9e3bV3l5edq5c6fnCwwAAAAAgBeE7QAAAAAA1FNpaanWr1+vxx9/XJJ0++23e7SZMmWKNm/erFtuuUX33nuvEhMTJUnbt2/XuHHj9Nxzz2nw4ME65ZRTNGzYMA0bNky/+tWvtG/fPj3wwAO1Zm5L0qOPPqrt27dr9OjReuKJJ9znW716tW655RY99dRTGjBggE455ZRax+3cuVNJSUn6+OOP1bFjx3rXWNO///1vJSQk1ArOXT766CMdO3bMHbRL0qhRo7R+/XrNnz+/1jFPPvmkVq5cqeXLl+vMM8/Uk08+WetcDz30kAoLCzV+/Hj37P6aFi5cqNdee009e/bUjBkz3PfM4XDo97//vd566y3NmDFDDz74oMexH3zwgf7+97+rX79+HvsAAAAAAPCHZ7YDAAAAABCCHj16uP/Jzc3VuHHjVFpaqmeeecZjRvnGjRu1bNkynXHGGbrvvvvcIbZU/WzyBx98UFVVVXr33XeDuvb27du1ZMkSpaWl6be//W2t8+Xm5uqaa65RVVWV5s6d6/X4yZMnewTt9a2xoqJCy5cvV9++fdW6dWuPa7mezT5q1Cj3thEjRighIUGLFy/W4cOHg+pzMF588UVJ0jPPPFPrwwmJiYl6+OGHlZGRoXfffVdOp9Pj2CuuuIKgHQAAAABQL4TtAAAAAACE4NJLL3X/M2LECJ1xxhmy2+3605/+5PF88c8//1ySNHToUBmG4XEu13LpGzZsCOraX331lSTpF7/4hXu2eE2jR4+u1a4mwzA0ZMgQj+31rXHlypU6fPiw13MWFRXpq6++Ups2bWrNYG/btq0GDRqkI0eO6F//+pfPfoZi//79+vbbb3XiiSfqhBNO8NifnJysXr166dChQ9q6davHfm/1AwAAAAAQDJaRBwAAAAAgBHWXOJek//3vf7r++ut18803a+HChcrOzpYkFRcXS5KefvppPf300z7Pabfbg7r2nj17JEldunTxut+13dWupnbt2ikpKclje31rXLJkiSR5fV77/PnzZZqmLrzwQo9rjho1SkuXLtX8+fN1ySWX+LxesFz1b9myRT169PDb1tt97ty5c4NrAAAAAAA0T4TtAAAAAAA0UM+ePXX11Vfr1Vdf1Zw5c/TQQw9JkqqqqiRVL/HuCuC9sdlsIV3P2wz0mtu97U9OTvZ6TH1rXLJkibp166auXbt6tJ0/f74k6csvv9S1115ba19FRYUkacWKFdqzZ486dOjg85rBcC0Nn5GRoUGDBvlt26ZNG49tvu4LAAAAAACBELYDAAAAABAGrmeF//jjj+5tnTp1kiRdcMEFuuGGGxp8DVcwXVRU5HW/a5Z3RkZG0OesT43ffvutduzYoXHjxnnsW79+vfsebN261evS7VJ1SL5gwQKv5wiFq/6MjAyvqw4AAAAAABApPLMdAAAAAIAwcAXgLVq0cG87++yzJUmLFy8OyzVcz09funSpDh065LF/3rx5tdoFoz41fvrpp5Kqn/Puq4abb75ZmzZt8vrPq6++KunnGfCBJCYmSvp5Fn5NnTp1Urdu3bRp0yZt37496D4AAAAAANBQhO0AAAAAADTQ//73P7311luSpF/84hfu7X369NHAgQO1cuVKTZ06VYcPH651nNPp1PLly7V69eqgrpOdna3zzjtPhw8f1hNPPCGHw+Het3btWr355puKj4/XddddF3Tt9alxyZIlatOmjc4444xabSsrK7Vw4UJJ0sUXX+zzmgMGDFC7du20ceNGfffddwFrdM3or7lqQE133HGHqqqqNHHiRK/nKyws1LvvvhvwOgAAAAAAhIJl5AEAAAAACIHreeyS5HA4VFxcrIKCAjmdTuXl5Wn06NG12j/99NMaN26c/v73v2vevHk65ZRT1LZtW+3evVs//vijDhw4oClTpig3Nzeo6z/++OO67rrr9MEHH+i///2v+vTpowMHDmjVqlWqqqrSQw89pFNOOSWkPoVS4549e/T1119r5MiRio+Pr3WeZcuW6cCBA+rWrZt69uzp83rx8fG64IILNHfuXM2fP1/33Xef3/ry8vI0c+ZMPfnkk/r888/dz4+/7777ZLPZNHr0aH333Xd65ZVXdMkll+jUU09VVlaWysrKtGPHDv3www865ZRTdMUVV4R0XwAAAAAA8IewHQAAAACAELz//vvur+Pi4tSqVSvl5uZq9OjRuuyyyxQXV3sRufbt2+vtt9/Wm2++qYULF2rDhg1yOBzKyMhQz549NWTIEA0fPjzo63fs2FHvvvuuXnrpJS1evFiLFi1SixYtNHDgQN10000aNGhQyH0KpcalS5fKNE3l5eV5nMe1hPyIESMCXnPEiBGaO3eu8vPzNXnyZL9te/XqpT/96U967bXX9Pnnn+vo0aOSqme0u4L3+++/X4MGDdKcOXO0bt06bdq0Sa1atVKnTp108803B1UTAAAAAAChMEzTNK0uAgAAAAAANA233367li9fri+//FJpaWlWlwMAAAAAgGWY2Q4AAAAAAIJ25pln6rzzziNoBwAAAAA0e8xsBwAAAAAAAAAAAAAgRHGBmwAAAAAAAAAAAAAAgJoI2wEAAAAAAAAAAAAACBFhOwAAAAAAAAAAAAAAISJsBwAAAAAAAAAAAAAgRITtAAAAAAAAAAAAAACEiLAdAAAAAAAAAAAAAIAQEbYDAAAAAAAAAAAAABAiwnYAAAAAAAAAAAAAAEJE2A4AAAAAAAAAAAAAQIgI2wEAAAAAAAAAAAAACNH/B8mZNXnNO0qxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = mnl.plot_change(change_df, title=\"Product Removal\", figsize=(20, 8))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Counterfactual Plausibility as a Criteria of Adequacy\n", "\n", "Kenneth Train observes that \n", "\n", "> \"[The IIA] property can be seen either as a restriction imposed by the model or as the natural outcome of a wellspecified model that captures all sources of correlation over alternatives into representative utility, so that only white noise remains. Often the researcher is unable to capture all sources of correlation explicitly, so\n", "that the unobserved portions of utility are correlated and IIA does not hold.\" - pg 76 in \"Discrete Choice Methods with Simulation\"\n", "\n", "which suggests that the Multinomial Logit model can have a compelling role in markets where the structure of the preferences aren't governed by anything we haven't included in the utility equations. But given the difficulty of such a comprehensive model specification we might want to seek alternative model specifications that can support more plausible counterfactual inference about the patterns of market substitution under intervention. One such model specification is the nested logit model. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last updated: Wed Jun 18 2025\n", "\n", "Python implementation: CPython\n", "Python version : 3.10.17\n", "IPython version : 8.35.0\n", "\n", "pytensor: 2.31.3\n", "\n", "arviz : 0.21.0\n", "pymc_marketing: 0.14.0\n", "pandas : 2.2.3\n", "matplotlib : 3.10.1\n", "\n", "Watermark: 2.5.0\n", "\n" ] } ], "source": [ "%load_ext watermark\n", "%watermark -n -u -v -iv -w -p pytensor" ] } ], "metadata": { "kernelspec": { "display_name": "pymc-marketing-dev", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.17" } }, "nbformat": 4, "nbformat_minor": 2 }