# Customer Choice Quickstart ```python from pymc_marketing.customer_choice import ( MVITS, generate_saturated_data, plot_product, ) # Generate simulated data scenario = { "total_sales_mu": 1000, "total_sales_sigma": 5, "treatment_time": 40, "n_observations": 100, "market_shares_before": [[0.7, 0.3, 0]], "market_shares_after": [[0.65, 0.25, 0.1]], "market_share_labels": ["competitor", "own", "new"], "random_seed": rng, } data = generate_saturated_data(**scenario) # Build a multivariate interrupted time series model model = MVITS( existing_sales=["competitor", "own"], saturated_market=True, ) model.inform_default_prior( data=data.loc[: scenario1["treatment_time"], ["competitor", "own"]] ) # Parameter estimation model.sample(data[["competitor", "own"]], data["new"]) # Visualize the results model.plot_fit(); ``` See the {ref}`gallery` section for more information about using the customer choice module.