MMM === .. currentmodule:: pymc_marketing.mmm.mmm .. autoclass:: MMM .. rubric:: Methods .. autosummary:: :toctree: classmethods MMM.__init__ MMM.add_lift_test_measurements MMM.attrs_to_init_kwargs MMM.build_from_idata MMM.build_model MMM.channel_contribution_forward_pass MMM.compute_channel_contribution_original_scale MMM.compute_mean_contributions_over_time MMM.create_fit_data MMM.create_idata_attrs MMM.fit MMM.format_recovered_transformation_parameters MMM.forward_pass MMM.get_channel_contribution_forward_pass_grid MMM.get_channel_contribution_share_samples MMM.get_errors MMM.get_target_transformer MMM.get_ts_contribution_posterior MMM.graphviz MMM.load MMM.load_from_idata MMM.max_abs_scale_channel_data MMM.max_abs_scale_target_data MMM.new_spend_contributions MMM.optimize_budget MMM.plot_allocated_contribution_by_channel MMM.plot_budget_allocation MMM.plot_channel_contribution_grid MMM.plot_channel_contribution_share_hdi MMM.plot_channel_parameter MMM.plot_components_contributions MMM.plot_direct_contribution_curves MMM.plot_errors MMM.plot_grouped_contribution_breakdown_over_time MMM.plot_new_spend_contributions MMM.plot_posterior_predictive MMM.plot_prior_predictive MMM.plot_prior_vs_posterior MMM.plot_waterfall_components_decomposition MMM.post_sample_model_transformation MMM.predict MMM.predict_posterior MMM.predict_proba MMM.preprocess MMM.sample_posterior_predictive MMM.sample_prior_predictive MMM.sample_response_distribution MMM.save MMM.set_idata_attrs MMM.validate MMM.validate_channel_columns MMM.validate_control_columns MMM.validate_date_col MMM.validate_target .. rubric:: Attributes .. autosummary:: ~MMM.X ~MMM.default_model_config ~MMM.default_sampler_config ~MMM.fit_result ~MMM.id ~MMM.methods ~MMM.output_var ~MMM.posterior ~MMM.posterior_predictive ~MMM.predictions ~MMM.preprocessing_methods ~MMM.prior ~MMM.prior_predictive ~MMM.validation_methods ~MMM.version ~MMM.y ~MMM.target_transformer ~MMM.channel_columns ~MMM.control_columns ~MMM.model ~MMM.date_column