# Copyright 2022 - 2025 The PyMC Labs Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Saturation transformations for the MMM model.
Each of these transformations is a subclass of
:class:`pymc_marketing.mmm.components.saturation.SaturationTransformation` and defines a function
that takes media and return the saturated media. The parameters of the function
are the parameters of the saturation transformation.
Examples
--------
Create a new saturation transformation:
.. code-block:: python
from pymc_marketing.mmm import SaturationTransformation
from pymc_marketing.prior import Prior
class InfiniteReturns(SaturationTransformation):
lookup_name: str = "infinite_returns"
def function(self, x, b):
return b * x
default_priors = {"b": Prior("HalfNormal", sigma=1)}
Plot the default priors for a saturation transformation:
.. code-block:: python
from pymc_marketing.mmm import HillSaturation
import matplotlib.pyplot as plt
saturation = HillSaturation()
prior = saturation.sample_prior()
curve = saturation.sample_curve(prior)
saturation.plot_curve(curve)
plt.show()
Define a hierarchical saturation function with only hierarchical parameters
for saturation parameter of logistic saturation.
.. code-block:: python
from pymc_marketing.prior import Prior
from pymc_marketing.mmm import LogisticSaturation
hierarchical_lam = Prior(
"Gamma",
alpha=Prior("HalfNormal"),
beta=Prior("HalfNormal"),
dims="channel",
)
priors = {
"lam": hierarchical_lam,
"beta": Prior("HalfNormal", dims="channel"),
}
saturation = LogisticSaturation(priors=priors)
"""
from __future__ import annotations
import numpy as np
import pytensor.tensor as pt
import xarray as xr
from pydantic import Field, InstanceOf, validate_call
from pymc_marketing.deserialize import deserialize, register_deserialization
from pymc_marketing.mmm.components.base import (
Transformation,
create_registration_meta,
)
from pymc_marketing.mmm.transformers import (
hill_function,
hill_saturation_sigmoid,
inverse_scaled_logistic_saturation,
logistic_saturation,
michaelis_menten,
root_saturation,
tanh_saturation,
tanh_saturation_baselined,
)
from pymc_marketing.prior import Prior
SATURATION_TRANSFORMATIONS: dict[str, type[SaturationTransformation]] = {}
SaturationRegistrationMeta = create_registration_meta(SATURATION_TRANSFORMATIONS)
[docs]
class LogisticSaturation(SaturationTransformation):
"""Wrapper around logistic saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.logistic_saturation`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import LogisticSaturation
rng = np.random.default_rng(0)
adstock = LogisticSaturation()
prior = adstock.sample_prior(random_seed=rng)
curve = adstock.sample_curve(prior)
adstock.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "logistic"
[docs]
def function(self, x, lam, beta):
"""Logistic saturation function."""
return beta * logistic_saturation(x, lam)
default_priors = {
"lam": Prior("Gamma", alpha=3, beta=1),
"beta": Prior("HalfNormal", sigma=2),
}
[docs]
class InverseScaledLogisticSaturation(SaturationTransformation):
"""Wrapper around inverse scaled logistic saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.inverse_scaled_logistic_saturation`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import InverseScaledLogisticSaturation
rng = np.random.default_rng(0)
adstock = InverseScaledLogisticSaturation()
prior = adstock.sample_prior(random_seed=rng)
curve = adstock.sample_curve(prior)
adstock.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "inverse_scaled_logistic"
[docs]
def function(self, x, lam, beta):
"""Inverse scaled logistic saturation function."""
return beta * inverse_scaled_logistic_saturation(x, lam)
default_priors = {
"lam": Prior("Gamma", alpha=0.5, beta=1),
"beta": Prior("HalfNormal", sigma=2),
}
[docs]
class TanhSaturation(SaturationTransformation):
"""Wrapper around tanh saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.tanh_saturation`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import TanhSaturation
rng = np.random.default_rng(0)
adstock = TanhSaturation()
prior = adstock.sample_prior(random_seed=rng)
curve = adstock.sample_curve(prior)
adstock.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "tanh"
[docs]
def function(self, x, b, c):
"""Tanh saturation function."""
return tanh_saturation(x, b, c)
default_priors = {
"b": Prior("HalfNormal", sigma=1),
"c": Prior("HalfNormal", sigma=1),
}
[docs]
class TanhSaturationBaselined(SaturationTransformation):
"""Wrapper around tanh saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.tanh_saturation_baselined`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import TanhSaturationBaselined
rng = np.random.default_rng(0)
adstock = TanhSaturationBaselined()
prior = adstock.sample_prior(random_seed=rng)
curve = adstock.sample_curve(prior)
adstock.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "tanh_baselined"
[docs]
def function(self, x, x0, gain, r, beta):
"""Tanh saturation function."""
return beta * tanh_saturation_baselined(x, x0, gain, r)
default_priors = {
"x0": Prior("HalfNormal", sigma=1),
"gain": Prior("HalfNormal", sigma=1),
"r": Prior("HalfNormal", sigma=1),
"beta": Prior("HalfNormal", sigma=1),
}
[docs]
class MichaelisMentenSaturation(SaturationTransformation):
"""Wrapper around Michaelis-Menten saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.michaelis_menten`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import MichaelisMentenSaturation
rng = np.random.default_rng(0)
adstock = MichaelisMentenSaturation()
prior = adstock.sample_prior(random_seed=rng)
curve = adstock.sample_curve(prior)
adstock.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "michaelis_menten"
[docs]
def function(self, x, alpha, lam):
"""Michaelis-Menten saturation function."""
return pt.as_tensor_variable(michaelis_menten(x, alpha, lam))
default_priors = {
"alpha": Prior("Gamma", mu=2, sigma=1),
"lam": Prior("HalfNormal", sigma=1),
}
[docs]
class HillSaturation(SaturationTransformation):
"""Wrapper around Hill saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.hill_function`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import HillSaturation
rng = np.random.default_rng(0)
adstock = HillSaturation()
prior = adstock.sample_prior(random_seed=rng)
curve = adstock.sample_curve(prior)
adstock.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "hill"
[docs]
def function(self, x, slope, kappa, beta):
"""Hill saturation function."""
return beta * hill_function(x, slope, kappa)
default_priors = {
"slope": Prior("HalfNormal", sigma=1.5),
"kappa": Prior("HalfNormal", sigma=1.5),
"beta": Prior("HalfNormal", sigma=1.5),
}
[docs]
class HillSaturationSigmoid(SaturationTransformation):
"""Wrapper around Hill saturation sigmoid function.
For more information, see :func:`pymc_marketing.mmm.transformers.hill_saturation_sigmoid`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import HillSaturationSigmoid
rng = np.random.default_rng(0)
adstock = HillSaturationSigmoid()
prior = adstock.sample_prior(random_seed=rng)
curve = adstock.sample_curve(prior)
adstock.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "hill_sigmoid"
function = hill_saturation_sigmoid
default_priors = {
"sigma": Prior("HalfNormal", sigma=1.5),
"beta": Prior("HalfNormal", sigma=1.5),
"lam": Prior("HalfNormal", sigma=1.5),
}
[docs]
class RootSaturation(SaturationTransformation):
"""Wrapper around Root saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.root_saturation`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import RootSaturation
rng = np.random.default_rng(0)
saturation = RootSaturation()
prior = saturation.sample_prior(random_seed=rng)
curve = saturation.sample_curve(prior)
saturation.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "root"
[docs]
def function(self, x, alpha, beta):
"""Root saturation function."""
return beta * root_saturation(x, alpha)
default_priors = {
"alpha": Prior("Beta", alpha=1, beta=2),
"beta": Prior("Gamma", mu=1, sigma=1),
}
[docs]
class NoSaturation(SaturationTransformation):
"""Wrapper around linear saturation function.
For more information, see :func:`pymc_marketing.mmm.transformers.linear_saturation`.
.. plot::
:context: close-figs
import matplotlib.pyplot as plt
import numpy as np
from pymc_marketing.mmm import NoSaturation
rng = np.random.default_rng(0)
saturation = NoSaturation()
prior = saturation.sample_prior(random_seed=rng)
curve = saturation.sample_curve(prior)
saturation.plot_curve(curve, random_seed=rng)
plt.show()
"""
lookup_name = "no_saturation"
[docs]
def function(self, x, beta):
"""Linear saturation function."""
return pt.as_tensor_variable(beta * x)
default_priors = {"beta": Prior("HalfNormal", sigma=1)}
[docs]
def saturation_from_dict(data: dict) -> SaturationTransformation:
"""Get a saturation function from a dictionary."""
data = data.copy()
cls = SATURATION_TRANSFORMATIONS[data.pop("lookup_name")]
if "priors" in data:
data["priors"] = {
key: deserialize(value) for key, value in data["priors"].items()
}
return cls(**data)
def _is_saturation(data):
return "lookup_name" in data and data["lookup_name"] in SATURATION_TRANSFORMATIONS
register_deserialization(_is_saturation, saturation_from_dict)