Source code for pymc_marketing.customer_choice.mnl_logit

#   Copyright 2022 - 2025 The PyMC Labs Developers
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
"""Multinomial Logit for Product Preference Analysis."""

import json

import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import patsy
import pymc as pm
import pytensor.tensor as pt
from typing_extensions import Self

from pymc_marketing.model_builder import ModelBuilder
from pymc_marketing.model_config import parse_model_config
from pymc_marketing.prior import Prior

HDI_ALPHA = 0.5


[docs] class MNLogit(ModelBuilder): """ Multinomial Logit class. Class to perform a multinomial logit analysis with the specific intent of determining the product attribute effects on consumer preference. Parameters ---------- choice_df : pd.DataFrame A wide DataFrame where each row is a choice scenario. Product-specific attributes are stored in columns, and the dependent variable identifies the chosen product. utility_equations : list of formula strings A list of formulas specifying how to model the utility of each product alternative. The formulas should be in Wilkinson style notation and allow the target product to be specified as as a function of the alternative specific attributes and the individual specific attributes: target_product ~ target_attribute1 + target_attribute2 | individual_attribute depvar : str The name of the dependent variable in the choice_df. covariates : list of str Covariate names (e.g., ['X1', 'X2']). model_config : dict, optional Model configuration. If None, the default config is used. sampler_config : dict, optional Sampler configuration. If None, the default config is used. Notes ----- Example: ------- The format of `choice_df`: +------------+------------+------------+------------+------------+ | Depvar | alt_1_X1 | alt_1_X2 | alt_2_X1 | alt_2_X2 | +============+============+============+============+============+ | alt_1 | 2.4 | 4.5 | 5.4 | 6.7 | +------------+------------+------------+------------+------------+ | alt_2 | 3.5 | 6.7 | 2.3 | 8.9 | +------------+------------+------------+------------+------------+ Example `utility_equations` list: >>> utility_equations = [ ... "alt_1 ~ X1_alt1 + X2_alt1 | income", ... "alt_2 ~ X1_alt2 + X2_alt2 | income", ... "alt_3 ~ X1_alt3 + X2_alt3 | income", ... ] """ _model_type = "Multinomial Logit Model" version = "0.1.0"
[docs] def __init__( self, choice_df: pd.DataFrame, utility_equations: list[str], depvar: str, covariates: list[str], model_config: dict | None = None, sampler_config: dict | None = None, ): self.choice_df = choice_df self.utility_equations = utility_equations self.depvar = depvar self.covariates = covariates model_config = model_config or {} model_config = parse_model_config(model_config) super().__init__(model_config=model_config, sampler_config=sampler_config)
@property def default_model_config(self) -> dict: """Default model configuration. This is a Categorical likelihood, Normal intercept, and a Normal vector of beta coefficients Returns ------- dict The default model configuration. """ alphas = Prior("Normal", mu=0, sigma=5, dims="alts") betas = Prior("Normal", mu=0, sigma=1, dims="alt_covariates") betas_fixed = Prior("Normal", mu=0, sigma=1, dims=("alts", "fixed_covariates")) return { "alphas_": alphas, "betas": betas, "betas_fixed_": betas_fixed, "likelihood": Prior( "Categorical", p=0, dims="obs", ), } @property def default_sampler_config(self) -> dict: """Default sampler configuration.""" return {} @property def output_var(self) -> str: """The output variable of the model.""" return "y" @property def _serializable_model_config(self) -> dict[str, int | float | dict]: # type: ignore result: dict[str, int | float | dict] = { "alphas_": self.model_config["alphas_"].to_dict(), "likelihood": self.model_config["likelihood"].to_dict(), "betas": self.model_config["betas"].to_dict(), "betas_fixed": self.model_config["betas_fixed_"].to_dict(), } return result
[docs] def parse_formula(self, df, formula, depvar): """Parse the three-part structure of a formula specification. Splits the formula into target, alternative-specific covariates, and fixed covariates. Ensures that the target variable appears in the dependent variable column and that all specified covariates exist in the input dataframe. """ target, covariates = formula.split("~") target = target.strip() if "|" in covariates: alt_covariates, fixed_covariates = covariates.split("|") else: alt_covariates, fixed_covariates = covariates, "" alt_covariates = alt_covariates.strip() fixed_covariates = fixed_covariates.strip() if target not in df[depvar].unique(): raise ValueError( f"Target '{target}' not found in dependent variable '{depvar}'." ) for f in fixed_covariates.split("+"): if f.strip() and f.strip() not in df.columns: raise ValueError( f"Fixed covariate '{f.strip()}' not found in dataframe columns." ) for a in alt_covariates.split("+"): if a.strip() and a.strip() not in df.columns: raise ValueError( f"Alternative covariate '{a.strip()}' not found in dataframe columns." ) return target, alt_covariates, fixed_covariates
[docs] def prepare_X_matrix(self, df, utility_formulas, depvar): """Prepare the X matrix for the utility equations. The X matrix is a tensor with dimensions: (N observations) x (Alternatives) x (Covariates). Assumes that the utility formulas specify an equal number of covariates per alternative; these can be zero-valued if an alternative lacks a specific attribute. Utility formulas should express the relationship between the choice outcome (dependent variable) and the attributes of each alternative that incentivize that choice. The left-hand side (LHS) of each formula must correspond to a value of the dependent variable, while the right-hand side (RHS) should define an additive combination of the available covariates. We also allow the incorporation of fixed covariates that do not vary across alternatives. For these, an alternative-specific parameter is used to allow the contribution to utility to vary by alternative. """ n_obs = len(df) n_alts = len(utility_formulas) n_covariates = len(utility_formulas[0].split("|")[0].split("+")) alts = [] alt_covariates = [] fixed_covariates = [] for f in utility_formulas: target, alt_covar, fixed_covar = self.parse_formula(df, f, depvar) f = "0 + " + alt_covar alt_covariates.append(np.asarray(patsy.dmatrix(f, df)).T) alts.append(target) if fixed_covar: fixed_covariates.append(fixed_covar) if fixed_covariates: F = np.unique(fixed_covariates)[0] F = "0 + " + F F = np.asarray(patsy.dmatrix(F, df)) else: F = [] X = np.stack(alt_covariates, axis=1).T if X.shape != (n_obs, n_alts, n_covariates): raise ValueError( f"X has shape {X.shape}, but expected {(n_obs, n_alts, n_covariates)}." ) return X, F, alts, np.unique(fixed_covariates)
@staticmethod def _prepare_y_outcome(df, alternatives, depvar): """Encode the outcome category variable for use in the modelling. The order of the alterntives should map to the order of the utility formulas. """ mode_mapping = dict(zip(alternatives, range(len(alternatives)), strict=False)) df["mode_encoded"] = df[depvar].map(mode_mapping) y = df["mode_encoded"].values return y @staticmethod def _prepare_coords(df, alternatives, covariates, f_covariates): """Prepare coordinates for PyMC model.""" if isinstance(f_covariates, np.ndarray) & (f_covariates.size > 0): f_cov = [s.strip() for s in f_covariates[0].split("+")] else: f_cov = [] coords = { "alts": alternatives, "alts_probs": alternatives[:-1], "alt_covariates": covariates, "fixed_covariates": f_cov, "obs": range(len(df)), } return coords
[docs] def preprocess_model_data(self, choice_df, utility_equations): """Pre-process the model initiation inputs into a format that can be used by the PyMC model.""" X, F, alternatives, fixed_covar = self.prepare_X_matrix( choice_df, utility_equations, self.depvar ) self.X, self.F, self.alternatives, self.fixed_covar = ( X, F, alternatives, fixed_covar, ) y = self._prepare_y_outcome(choice_df, self.alternatives, self.depvar) self.y = y # note: type hints for coords required for mypy to not get confused self.coords: dict[str, list[str]] = self._prepare_coords( choice_df, self.alternatives, self.covariates, self.fixed_covar ) return X, F, y
[docs] def build_model(self, X, y, **kwargs): """Do not use, required by parent class. Prefer make_model().""" return super().build_model(X, y, **kwargs)
[docs] def make_model(self, X, F, y) -> None: """Build Model.""" with pm.Model(coords=self.coords) as model: # Intercept Parameters alphas = self.model_config["alphas_"].create_variable(name="alphas_") # Covariate Weight Parameters betas = self.model_config["betas"].create_variable("betas") # Instantiate covariate data for each Utility function X_data = pm.Data("X", X, dims=("obs", "alts", "alt_covariates")) # Instantiate outcome data observed = pm.Data("y", y, dims="obs") if self.F is not None: betas_fixed_ = self.model_config["betas_fixed_"].create_variable( name="betas_fixed_" ) betas_fixed = pm.Deterministic( "betas_fixed", pt.set_subtensor(betas_fixed_[-1, :], 0), dims=("alts", "fixed_covariates"), ) F_data = pm.Data("F", F) F = pm.Deterministic( "F_interaction", pm.math.dot(F_data, betas_fixed.T) ) else: F = pt.zeros(observed.shape[0]) # Compute utility as a dot product U = pm.math.dot(X_data, betas) # (N, alts) # Zero out reference alternative intercept alphas = pm.Deterministic( "alphas", pt.set_subtensor(alphas[-1], 0), dims="alts" ) U = pm.Deterministic("U", F + U + alphas, dims=("obs", "alts")) ## Apply Softmax Transform p_ = pm.Deterministic("p", pm.math.softmax(U, axis=1), dims=("obs", "alts")) # likelihood _ = pm.Categorical("likelihood", p=p_, observed=observed, dims="obs") return model
def _data_setter( self, X: np.ndarray | pd.DataFrame, y: np.ndarray | pd.Series | None = None, ) -> None: """Set the data. Required from the parent class """
[docs] def create_idata_attrs(self) -> dict[str, str]: """Create the attributes for the InferenceData object. Returns ------- dict[str, str] The attributes for the InferenceData object. """ attrs = super().create_idata_attrs() attrs["covariates"] = json.dumps(self.covariates) attrs["depvar"] = json.dumps(self.depvar) attrs["choice_df"] = json.dumps("Placeholder for DF") attrs["utility_equations"] = json.dumps(self.utility_equations) return attrs
[docs] def sample_prior_predictive(self, extend_idata, kwargs): """Sample Prior Predictive Distribution.""" with self.model: # sample with new input data prior_pred: az.InferenceData = pm.sample_prior_predictive(500, **kwargs) self.set_idata_attrs(prior_pred) if extend_idata: if self.idata is not None: self.idata.extend(prior_pred) else: self.idata = prior_pred
[docs] def fit(self, extend_idata, kwargs): """Fit Nested Logit Model.""" if extend_idata: with self.model: self.idata.extend(pm.sample(**kwargs)) else: with self.model: self.idata = pm.sample(**kwargs)
[docs] def sample_posterior_predictive(self, extend_idata, kwargs): """Sample Posterior Predictive Distribution.""" if extend_idata: with self.model: self.idata.extend( pm.sample_posterior_predictive( self.idata, var_names=["likelihood", "p"], **kwargs ) ) else: with self.model: self.post_pred = pm.sample_posterior_predictive( self.idata, var_names=["likelihood", "p"], **kwargs )
[docs] def sample( self, sample_prior_predictive_kwargs: dict | None = None, fit_kwargs: dict | None = None, sample_posterior_predictive_kwargs: dict | None = None, ) -> Self: """Sample all the things. Run all of the sample methods in the sequence: - :meth:`sample_prior_predictive` - :meth:`fit` - :meth:`sample_posterior_predictive` Parameters ---------- sample_prior_predictive_kwargs : dict, optional The keyword arguments for the sample_prior_predictive method. fit_kwargs : dict, optional The keyword arguments for the fit method. sample_posterior_predictive_kwargs : dict, optional The keyword arguments for the sample_posterior_predictive method. Returns ------- Self The model instance. """ sample_prior_predictive_kwargs = sample_prior_predictive_kwargs or {} fit_kwargs = fit_kwargs or {} sample_posterior_predictive_kwargs = sample_posterior_predictive_kwargs or {} if not hasattr(self, "model"): X, F, y = self.preprocess_model_data(self.choice_df, self.utility_equations) # type: ignore model = self.make_model(X, F, y) self.model = model self.sample_prior_predictive( extend_idata=True, kwargs=sample_prior_predictive_kwargs ) self.fit(extend_idata=True, kwargs=fit_kwargs) self.sample_posterior_predictive( extend_idata=True, kwargs=sample_posterior_predictive_kwargs ) return self
[docs] def apply_intervention(self, new_choice_df, new_utility_equations=None): """Apply one of two types of intervention. The first type of intervention assumes we have a fitted model and just aims to sample from the posterior predictive distribution after adjusting one of more of the models observable attributes and passing in the new_choice_df. The second type of intervention allows that we remove a product entirely from the market place and model the market share which accrues to each product in the adjusted market. """ if not hasattr(self, "model"): self.sample() if new_utility_equations is None: new_X, new_F, new_y = self.preprocess_model_data( new_choice_df, self.utility_equations ) with self.model: pm.set_data({"X": new_X, "F": new_F, "y": new_y}) # use the updated values and predict outcomes and probabilities: idata_new_policy = pm.sample_posterior_predictive( self.idata, var_names=["p", "likelihood"], return_inferencedata=True, extend_inferencedata=False, random_seed=100, ) self.intervention_idata = idata_new_policy else: new_X, new_F, new_y = self.preprocess_model_data( new_choice_df, new_utility_equations ) new_model = self.make_model(new_X, new_F, new_y) with new_model: idata_new_policy = pm.sample_prior_predictive() idata_new_policy.extend( pm.sample( target_accept=0.99, tune=2000, idata_kwargs={"log_likelihood": True}, random_seed=101, ) ) idata_new_policy.extend( pm.sample_posterior_predictive( idata_new_policy, var_names=["p", "likelihood"] ) ) self.intervention_idata = idata_new_policy return idata_new_policy
[docs] @staticmethod def calculate_share_change(idata, new_idata): """Calculate difference in market share due to market intervention.""" expected = idata["posterior_predictive"].mean(dim=("chain", "draw", "obs"))["p"] expected_new = new_idata["posterior_predictive"].mean( dim=("chain", "draw", "obs") )["p"] shares_df = pd.DataFrame( {"product": expected["alts"], "policy_share": expected} ) shares_df_new = pd.DataFrame( {"product": expected_new["alts"], "new_policy_share": expected_new} ) shares_df = shares_df.merge( shares_df_new, left_on="product", right_on="product", how="left" ) shares_df.fillna(0, inplace=True) shares_df["relative_change"] = ( shares_df["new_policy_share"] - shares_df["policy_share"] ) / shares_df["policy_share"] shares_df.set_index("product", inplace=True) return shares_df
[docs] @staticmethod def plot_change(change_df, title="Change due to Intervention", figsize=(8, 4)): """Plot change induced by a market intervention.""" fig, ax = plt.subplots(figsize=figsize) ax.axvline(x=0, color="black", linestyle="--", linewidth=1) ax.axvline(x=1, color="black", linestyle="--", linewidth=1) ax.set_xlim(-0.2, 1.2) upperbound = change_df[["policy_share", "new_policy_share"]].max().max() + 0.05 ax.text( -0.05, upperbound, "BEFORE", fontsize=12, color="black", fontweight="bold" ) ax.text( 0.95, upperbound, "AFTER", fontsize=12, color="black", fontweight="bold" ) for mode in change_df.index: # Color depending on the evolution value_before = change_df[change_df.index == mode]["policy_share"].item() value_after = change_df[change_df.index == mode]["new_policy_share"].item() # Red if the value has decreased, green otherwise if value_before > value_after: color = "red" else: color = "green" # Add the line to the plot ax.plot( [0, 1], change_df.loc[mode][["policy_share", "new_policy_share"]], marker="o", label=mode, color=color, ) for mode in change_df.index: for metric in ["policy_share", "new_policy_share"]: y_position = np.round(change_df.loc[mode][metric], 2) if metric == "policy_share": x_position = 0 - 0.12 else: x_position = 1 + 0.02 ax.text( x_position, y_position, f"{mode}, {y_position}", fontsize=8, # Text size color="black", # Text color ) ax.set_xticks([]) ax.set_ylabel("Share of Market %") ax.set_xlabel("Before/After") ax.set_title(title) return fig